66 resultados para Aragón (Corona)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The loading of the photosensitisers meso-Tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP), methylene blue (MB) and IMP with sodium dodecyl sulphate (SDS) into and release from hydrogels composed of the polyelectrolyte poly(methyl vinyl ether-co-maleic acid) crosslinked in a 2:1 ratio with PEG 10,000 were investigated as a potential rapid photodynamic antimicrobial chemotherapy (PACT) treatment for infected wounds using iontophoresis as a novel delivery method. Photosensitiser uptake was very high; (% TMP uptake; 95.53-96.72%) (% MB uptake; 90.58-93.26%) and was PMVE/MA concentration independent, whilst SDS severely limited TMP uptake (5.93-8.75%). Hydrogel hardness, compressibility and adhesiveness on the dermal surface of neonate porcine skin increased with PMVE/MA concentration and were significantly increased with SDS.

The ionic conductivities of the hydrogels increased with PMVE/MA concentration. Drug release was PMVE/MA concentration independent, except for drug release under iontophoteric conditions for MB and TMP (without SDS). In just 15 min, the mean% drug concentrations released of TMP, TMP (with SDS) and MB using an electric current ranged from 22.30 to 64.72 mu gml(-1), 6.37-4.59 mu gml(-1) and 11.73-36.57 mu gml(-1) respectively. These concentrations were in excess of those required to induce complete kill of clinical strains of meticillin-resistant Staphylococcus aureus and Burkholderia cepacia. Thus these results support our contention that the iontophoteric delivery of IMP and MB using anti-adherent, electrically-responsive, PEG-crosslinked PMVE/MA hydrogels are a potential option in the rapid PACT treatment of infected wounds. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pulmonary disease is the main cause of morbidity and mortality in cystic fibrosis (CF) suffers, with multidrug-resistant Pseudomonas aeruginosa and Burkholderia cepacia complex as problematic pathogens in terms of recurrent and unremitting infections. Novel treatment of pulmonary infection is required to improve the prognosis and quality of life for chronically infected patients. Photodynamic antimicrobial chemotherapy (PACT) is a treatment combining exposure to a light reactive drug, with light of a wavelength specific for activation of the drug, in order to induce cell death of bacteria. Previous studies have demonstrated the susceptibility of CF pathogens to PACT in vitro. However, for the treatment to be of clinical use, light and photosensitizer must be able to be delivered successfully to the target tissue. This preliminary study assessed the potential for delivery of 635 nm light and methylene blue to the lung using an ex vivo and in vitro lung model. Using a fibre-optic light delivery device coupled to a helium-neon laser, up to 11% of the total light dose penetrated through full thickness pulmonary parenchymal tissue, which indicates potential for multiple lobe irradiation in vivo. The mass median aerodynamic diameter (MMAD) of particles generated via methylene blue solution nebulisation was 4.40 µm, which is suitable for targeting the site of infection within the CF lung. The results of this study demonstrate the ability of light and methylene blue to be delivered to the site of infection in the CF lung. PACT remains a viable option for selective killing of CF lung pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emission line fluxes from cool stars are widely used to establish an apparent emission measure distribution, EmdApp(Te), between temperatures characteristic of the low transition region and the low corona. The true emission measure distribution, EmdTrue(Te), is determined by the energy balance and geometry adopted and, with a numerical model, can be used to predict EmdApp(Te), to guide further modelling. The scaling laws that exist between coronal parameters arise from the dimensions of the terms in the energy balance equation. Here, analytical approximations to numerical solutions for EmdTrue(Te) are presented, which show how the constants in the coronal scaling laws are determined. The apparent emission measure distributions show a minimum value at some T0 and a maximum at the mean coronal temperature Tc (although in some stars, emission from active regions can contribute). It is shown that, for the energy balance and geometry adopted, the analytical values of the emission measure and electron pressure at T0 and Tc depend on only three parameters: the stellar surface gravity and the values of T0 and Tc. The results are tested against full numerical solutions for e Eri (K2 V) and are applied to Procyon (a CMi, F5 IV/V). The analytical approximations can be used to restrict the required range of full numerical solutions, to check the assumed geometry and to show where the adopted energy balance may not be appropriate. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of ? Eri (K2 V) have been made with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The spectra obtained show a number of emission lines which can be used to determine, or place limits on, the electron density and pressure. Values of the electron pressure are required in order to make quantitative models of the transition region and inner corona from absolute line fluxes, and to constrain semi-empirical models of the chromosphere. Using line flux ratios in Si II and O IV a mean electron pressure of P = NT = 4.8 × 10 cm K is derived. This value is compatible with the lower and upper limits to P found from flux ratios in C III, O V and Fe XII. Some inconsistencies which may be because of small uncertainties in the atomic data used are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emission measure distribution in the upper transition region and corona of e Eri is derived from observed emission-line fluxes. Theoretical emission measure distributions are calculated assuming that the radiation losses are balanced by the net conductive flux. We discuss how the area factor of the emitting regions as a function of temperature can be derived from a comparison between these emission measure distributions. It is found that the filling factor varies from ~0.2 in the mid-transition region to ~1.0 in the inner corona. The sensitivity of these results to the adopted ion fractions, the iron abundance and other parameters is discussed. The area factors found are qualitatively similar to the observed structure of the solar atmosphere, and can be used to constrain two-component models of the chromosphere. Given further observations, the method could be applied to investigate the trends in filling factors with indicators of stellar activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyses of the widths and shifts of optically thin emission lines in the ultraviolet spectrum of the active dwarf e Eri (K2 V) are presented. The spectra were obtained using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer. The linewidths are used to find the non-thermal energy density and its variation with temperature from the chromosphere to the upper transition region. The energy fluxes that could be carried by Alfvén and acoustic waves are investigated, to test their possible roles in coronal heating. Acoustic waves do not appear to be a viable means of coronal heating. There is, in principle, ample flux in Alfvén waves, but detailed calculations of wave propagation are required before definite conclusions can be drawn concerning their viability. The high sensitivity and spectral resolution of the above instruments have allowed two-component Gaussian fits to be made to the profiles of the stronger transition region lines. The broad and narrow components that result share some similarities with those observed in the Sun, but in e Eri the broad component is redshifted relative to the narrow component and contributes more to the total line flux. The possible origins of the two components and the energy fluxes implied are discussed. On balance our results support the conclusion of Wood, Linsky & Ayres, that the narrow component is related to Alfvén waves reaching to the corona, but the origin of the broad component is not clear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colon-residing bacteria, such as vancomycin-resistant Enterococcus faecalis and Bacteroides fragilis, can cause a range of serious clinical infections. Photodynamic antimicrobial chemotherapy (PACT) may be a novel treatment option for these multidrug resistant organisms. The aim of this study was to formulate a Eudragit®-based drug delivery system, via hot melt extrusion (HME), for targeting colonic release of photosensitizer. The susceptibility of E. faecalis and B. fragilis to PACT mediated by methylene blue (MB), meso-tetra(N-methyl-4-pyridyl)porphine tetra-tosylate (TMP), or 5-aminolevulinic acid hexyl-ester (h-ALA) was determined, with tetrachlorodecaoxide (TCDO), an oxygen-releasing compound, added in some studies. Results show that, for MB, an average of 30% of the total drug load was released over a 6-h period. For TMP and h-ALA, these values were 50% and 16% respectively. No drug was released in the acidic media. Levels of E. faecalis and B. fragilis were reduced by up to 4.67 and 7.73 logs, respectively, on PACT exposure under anaerobic conditions, with increased kill associated with TCDO. With these formulations, photosensitizer release could potentially be targeted to the colon, and colon-residing pathogens killed by PACT. TCDO could be used in vivo to generate oxygen, which could significantly impact on the success of PACT in the clinic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The use of Objective Structured Clinical Examination (OSCE) in Pharmacy has been explored; however this is the first attempt in Queen’s University School of Pharmacy, Belfast to assess students via this method in a module where chemistry is the main discipline.

Aims: To devise an OSCE to assess undergraduate ability to check extemporaneously dispensed products for clinical and formulation errors. This activity also aims to consider whether it is a viable method of assessment in such a science-based class, from a staff and student perspective.

Method: Students rotated around a number of stations, performing a check of the product, corresponding prescription and formulation record sheet detailing the theory behind the formulation. They were assessed on their ability to spot intentional mistakes at each one.

Results: Of the 79 students questioned, 95% indicated that OSCE made them aware of the importance of the clinical check carried out by the pharmacist. Nearly all of the undergraduates (72 out of 79) felt that OSCE made them aware of the type of mistakes that students make in class. Most (5 out of 7) of the academic team members strongly agreed that it made students aware of ‘point of dispensing’ checks carried out by pharmacists, in addition to helping them to prepare for their exam.

Conclusion: OSCE assesses both scientific and formulation skills, and has increased the diversity of assessment of this module, bringing with it many additional benefits for the undergraduates since it measures their ability to exercise professional judgement in a time- constrained environment and, in this way, mirrors the conditions many pharmacists work within.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The details of the mechanism(s) responsible for the observed heating and dynamics of the solar atmosphere still remain a mystery. Magnetohydrodynamic waves are thought to have a vital role in this process. Although it has been shown that incompressible waves are ubiquitous in off-limb solar atmospheric observations, their energy cannot be readily dissipated. Here we provide, for the first time, on-disk observation and identification of concurrent magnetohydrodynamic wave modes, both compressible and incompressible, in the solar chromosphere. The observed ubiquity and estimated energy flux associated with the detected magnetohydrodynamic waves suggest the chromosphere is a vast reservoir of wave energy with the potential to meet chromospheric and coronal heating requirements. We are also able to propose an upper bound on the flux of the observed wave energy that is able to reach the corona based on observational constraints, which has important implications for the suggested mechanism(s) for quiescent coronal heating. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: On 13 June 1998, the TRACE satellite was fortuitously well placed to observe the effects of a flare-induced EIT wave in the corona, and its subsequent interaction with coronal magnetic loops. In this study, we use these TRACE observations to corroborate previous theoretical work, which determined the response of a coronal loop to a harmonic driver in the context of ideal magnetohydrodynamics, as well as estimate the magnetic field strength and the degree of longitudinal inhomogeneity. Methods: Loop edges are tracked, both spatially and temporally, using wavelet modulus maxima algorithms, with corresponding loop displacements from its quiescent state analysed by fitting scaled sinusoidal functions. The physical parameters of the coronal loop are subsequently determined using seismological techniques. Results: The studied coronal loop is found to oscillate with two distinct periods, 501 ± 5 s and 274 ± 7 s, which could be interpreted as belonging to the fundamental kink mode and first harmonic, or could reflect the stage of an overdriven loop. Additional scenarios for explaining the two periods are listed, each resulting in a different value of the magnetic field and the intrinsic and sub-resolution properties of the coronal loop. When assuming the periods belong to the fundamental kink mode and its first harmonic, we obtain a magnetic field strength inside the oscillating coronal loop of 2.0 ± 0.7 G. In contrast, interpreting the oscillations as a combination of the loop's natural kink frequency and a harmonic EIT wave provides a magnetic field strength of 5.8 ± 1.5 G. Using the ratio of the two periods, we find that the gravitational scale height in the loop is 73 ± 3 Mm. Conclusions: We show that the observation of two distinct periods in a coronal loop does not necessarily lead to a unique conclusion. Multiple plausible scenarios exist, suggesting that both the derived strength of the magnetic field and the sub-resolution properties of the coronal loop depend entirely on which interpretation is chosen. The interpretation of the observations in terms of a combination of the natural kink mode of the coronal loop, driven by a harmonic EIT wave seems to result in values of the magnetic field consistent with previous findings. Other interpretations, which are realistic, such as kink fundamental mode/first harmonic and the oscillations of two sub-resolution threads result in magnetic field strengths that are below the average values found before.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun's quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. We study the formation and evolution of a failed filament eruption observed in NOAA active region 11121 near the southeast
limb on November 6, 2010.
Methods. We used a time series of SDO/AIA 304, 171, 131, 193, 335, and 94 Å images, SDO/HMI magnetograms, as well as ROSA
and ISOON Hα images to study the erupting active region.
Results. We identify coronal loop arcades associated with a quadrupolar magnetic configuration, and show that the expansion and
cancellation of the central loop arcade system over the filament is followed by the eruption of the filament. The erupting filament
reveals a clear helical twist and develops the same sign of writhe in the form of inverse γ-shape.
Conclusions. The observations support the “magnetic breakout” process in which the eruption is triggered by quadrupolar reconnection
in the corona. We propose that the formation mechanism of the inverse γ-shape flux rope is the magnetohydrodynamic helical
kink instability. The eruption has failed because of the large-scale, closed, overlying magnetic loop arcade that encloses the active
region

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 1 x 10(9) pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every similar to 360 s in a 10,000 km(2) area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.