51 resultados para Application efficiency


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metastasis is the predominant cause of death from cancer yet we have few biomarkers to predict patients at increased risk of metastasis and are unable to effectively treat disseminated disease. Analysis of 448 primary breast tumors determined that expression of the hylauronan receptor CD44 associated with high grade (p = 0.046), ER- (p = 0.001) and PR-negative tumors (p = 0.029), and correlated with increased distant recurrence and reduced disease-free survival in patients with lymph-node positive or large tumors. To determine its functional role in distant metastasis, CD44 was knocked-down in MDA-MB-231 cells using two independent shRNA sequences. Loss of CD44 attenuated tumor cell adhesion to endothelial cells and reduced cell invasion but did not affect proliferation in vitro. To verify the importance of CD44 to post-intravasation events, tumor formation was assessed by quantitative in vivo imaging and post-mortem tissue analysis following an intra-cardiac injection of transfected cells. CD44 knock-down increased survival and decreased overall tumor burden at multiple sites, including the skeleton in vivo. We conclude that elevated CD44 expression on tumour cells within the systemic circulation increases the efficiency of post-intravasation events and distant metastasis in vivo, consistent with its association with increased distant recurrence and reduced disease-free survival in patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of photon interaction and reaction pH can have significant impacts on semiconductor photocatalysis. This paper describes the effect of pH on the photonic efficiency of photocatalytic reactions in the aqueous phase using TiO2 catalysts. The reactor was irradiated using periodic illumination with UV-LEDs through control of the illumination duty cycle (γ) through a series of light and dark times (Ton/Toff). Photonic efficiencies for methyl orange degradation were found to be comparable at high γ irrespective of pH. At lower γ, pH effects on photonic efficiency were very distinct across acidic, neutral and alkaline pH indicating an effect of complementary parameters. The results suggest photonic efficiency is greatest as illumination time, Ton approaches interfacial electron-transfer characteristic time which is within the range of this study or charge-carrier lifetimes upon extrapolation and also when electrostatic attraction between surface-trapped holes, {TiIVOH}ads+ and substrate molecules is strongest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of controlled periodic illumination with UV LEDs for enhancing photonic efficiency of photocatalytic decomposition processes in water has been investigated using methyl orange as a model compound. The impact of the length of light and dark time periods (T ON/T OFF times) on photodegradation and photonic efficiency using a UV LED-illuminated photoreactor has been studied. The results have shown an inverse dependency of the photonic efficiency on duty cycle and a very little effect on T ON or T OFF time periods, indicating no effect of rate-limiting steps through mass diffusion or adsorption/desorption in the reaction. For this reactor, the photonic efficiency under controlled periodic illumination (CPI) matches to that of continuous illumination, for the same average UV light intensities. Furthermore, under CPI conditions, the photonic efficiency is inversely related to the average UV light intensity in the reactor, in the millisecond time regime. This is the first study that has investigated the effect of controlled periodic illumination using ultra band gap UV LED light sources in the photocatalytic destruction of dye compounds using titanium dioxide. The results not only enhance the understanding of the effect of periodic illumination on photocatalytic processes but also provide a greater insight to the potential of these light sources in photocatalytic reactions. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasound has long been recognized as a means of effecting change at the cellular and tissue levels [1-3], which may be enhanced in the presence of photosensitive agents [4-6]. During insonation, the presence of bubbles can also play a role, creating strong microstreaming effects in solution and in more dramatic circumstances leading to the formation of energetic microjets [7], plasmas [8], and the production of other highly reactive species [9]. Such sonodynamic activity has generated particular excitement in the medical community as it Moreover the dual role for microbubbles as both an adjunct to therapy and a diagnostic echogenicity enhancer has seen industry take a proactive role in their development. In the present paper we studied the role of ultrasound driven sonoluminescent light on the degradation of a fluorescent test species (rhodamine) in the presence of an archetypal photocatalyst material, TiO 2, with a view to exploring its exploitation potential for downstream medical applications. We found that, whilst the efficiency of this process is seen to be low compared with conventional ultra-violet sources, we advocate the further exploration of the sonoluminescent approach given its potential for non-invasive applications. A strategy for enhancing the effect is also suggested. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy in today's short-range wireless communication is mostly spent on the analog- and digital hardware rather than on radiated power. Hence,purely information-theoretic considerations fail to achieve the lowest energy per information bit and the optimization process must carefully consider the overall transceiver. In this paper, we propose to perform cross-layer optimization, based on an energy-aware rate adaptation scheme combined with a physical layer that is able to properly adjust its processing effort to the data rate and the channel conditions to minimize the energy consumption per information bit. This energy proportional behavior is enabled by extending the classical system modes with additional configuration parameters at the various layers. Fine grained models of the power consumption of the hardware are developed to provide awareness of the physical layer capabilities to the medium access control layer. The joint application of the proposed energy-aware rate adaptation and modifications to the physical layer of an IEEE802.11n system, improves energy-efficiency (averaged over many noise and channel realizations) in all considered scenarios by up to 44%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent difficult economic times, the efficiency with which a charity spends the funds entrusted to it has become an increasingly important aspect of charitable performance. Transparency on efficiency, including the reporting of relevant measures and information to understand, contextualise and evaluate such measures, is suggested as important to a range of stakeholders. However, using a novel framework for the analysis of efficiency reporting in the context of transparency and stakeholder theory, this research provides evidence that reporting on efficiency in UK (United Kingdom) charities lacks transparency, both in terms of the extent and manner of disclosure. It is argued that efficiency reporting in UK charities is more concerned with legitimising these organisations rather than providing ethically-driven accounts of their efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a highly instrumented single screw extruder has been used to study the effect of polymer rheology on the thermal efficiency of the extrusion process. Three different molecular weight grades of high density polyethylene (HDPE) were extruded at a range of conditions. Three geometries of extruder screws were used at several set temperatures and screw rotation speeds. The extruder was equipped with real-time quantification of energy consumption; thermal dynamics of the process were examined using thermocouple grid sensors at the entrance to the die. Results showed that polymer rheology had a significant effect on process energy consumption and thermal homogeneity of the melt. Highest specific energy consumption and poorest homogeneity was observed for the highest viscosity grade of HDPE. Extruder screw geometry, set extrusion temperature and screw rotation speed were also found to have a direct effect on energy consumption and melt consistency. In particular, specific energy consumption was lower using a barrier flighted screw compared to single flighted screws at the same set conditions. These results highlight the complex nature of extrusion thermal dynamics and provide evidence that rheological properties of the polymer can significantly influence the thermal efficiency of the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study how ownership structure and management objectives interact in determining the company size without assuming information constraints or any explicit costs of management. In symmetric agent economies, the optimal company size balances the returns to scale of the production function and the returns to collaboration efficiency. For a general class of payoff functions, we characterize the optimal company size, and we compare the optimal company size across different managerial objectives. We demonstrate the restrictiveness of common assumptions on effort aggregation (e.g., constant elasticity of effort substitution), and we show that common intuition (e.g., that corporate companies are more efficient and therefore will be larger than equal-share partnerships) might not hold in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This manuscript describes the application and further development of the TAP technique in kinetic characterization of heterogeneous catalysis. The major application of TAP systems is to study mechanisms, kinetics and transport phenomena in heterogeneous catalysis, all of which is made possible by the sub-millisecond time resolution. Furthermore, the kinetic information obtained can be used to gain an insight into the mechanism occurring over the catalyst system. This is advantageous as heterogeneous catalysts with an improved efficiency can be developed as a result. TAP kinetic studies are carried out at low pressure (~1x10-7 mbar) and TAP pulses are sufficiently small (1013-1015 molecules) so as to maintain this low pressure. The use of a small number of molecules in comparison to the total number of active sites means the state of the catalyst remains relatively unchanged. The use of the low intensity pulses also makes the pressure gradient negligible and so allows the TAP reactor system to operate in the Knudsen Diffusion regime, where gas-gas reactions are eliminated. Hence only gas-catalyst reactions are investigated and, by the use of moment analysis of observed exit flow, rate constants of elementary steps of the reaction can be obtained.

In this manuscript, two attempts to further the TAP technique are reported. Firstly, the work undertaken at QUB to attempt to control the number of molecules of condensable reagents that can be pulsed during a TAP pulse experiment is disclosed. Secondly, a collaborative project with SAI Ltd Manchester is discussed in a separate chapter, where technical details and validation of a customised time of flight mass spectrometer (ToF MS) for the QUB TAP-1 system are reported. A collaborative project with Cardiff Catalysis Institute focusing on the study of CO oxidation over hopcalite catalysts is also reported. The analysis of the experimental results has provided an insight into the possible mechanism of the oxidation of CO over these catalysts. A correction function has also been derived which accounts for the adsorption of reactant molecules over inert materials that are used for the reactor packing in TAP experiments. This function was then applied to the selective reduction of O2 in a H2 rich ethene feed, so that more accurate TAP moment based analysis could be conducted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The starfish, Asterias rubens, preys on mussels (Mytilus edulis), which are relaid during benthic cultivation processes. Starfish mops, a modified dredge used to remove starfish from mussel cultivation beds, are used in several fisheries today but few studies have attempted to quantify the effectiveness of this method in removing starfish. This study tested the effectiveness of starfish mopping to reduce starfish numbers on mussel beds in Belfast Lough, Northern Ireland. Video surveys to determine starfish densities on mussel beds were conducted between October 2013 and December 2014 using a GoPro™ camera attached to starfish mops. This allowed us to firstly test whether starfish density varied among mussel beds and to investigate how fluctuations in starfish numbers may vary in relationship to starfish ecology. We then estimated the efficiency of mops at removing starfish from mussel beds by comparing densities of starfish on beds, as determined using video footage, with densities removed by mops. Starfish abundance was similar among different mussel beds during this study. The efficiency of mops at removing estimated starfish aggregations varied among mussel beds (4–78%) and the mean reduction in starfish abundance was 27% (± SE 3.2). The effectiveness of mops at reducing starfish abundance was shown to decline as the initial density of starfish on mussel beds increased. It can be recommended that the exact deployment technique of mops on mussel beds should vary depending on the density of starfish locally. The area of mussel bed covered by mops during a tow, for example, should be less when starfish densities are high, to maintain efficiencies throughout the full length of tows and to optimise the removal of starfish from mussel beds. This strategy, by reducing abundance of a major predator, could assist in reducing losses in the mussel cultivation industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With advancements in the development of visible light responsive catalysts for H2 production frequently being reported, photocatalytic water splitting has become an attractive method as a potential ‘solar fuel generator’. The development of novel photo reactors which can enhance the potential of such catalyst, however, is rarely reported. This is particularly important as many reactor configurations are mass transport limited, which in term limits the efficiency of more effective photocatalysts in larger scale applications. This paper describes the performance of a novel fluidised photo reactor for the production of H2 over two catalysts under UV-Visible light and natural solar illumination. Catalysts Pt-C3N4 and NaTaO3.La were dispersed in the reactor and the rate of H2 was determined by GC-TCD analysis of the gas headspace. The unit was an annular reactor constructed from stainless steel 316 and quartz glass with a propeller located in the base to control fluidisation of powder catalysts. Reactor properties such as propeller rotational speed were found to enhance the photo activity of the system through the elimination of mass transport limitations and increasing light penetration. The optimum conditions for H2 evolution were found to be a propeller rotational speed of 1035 rpm and 144 W of UV-Visible irradiation, which produced a rate of 89 µmol h-1 g-1 over Pt-C3N4. Solar irradiation was provided by the George Ellery Hale Solar Telescope, located at the California Institute of Technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter investigates the uplink spectral efficiency (SE) of a two-tier cellular network, where massive multiple-input multiple-output macro base stations are overlaid with dense small cells. Macro user equipments (MUEs) and small cells with single user equipment uniformly scattered are modeled as two independent homogeneous Poisson point processes. By applying stochastic geometry, we analyze the SE of the multiuser uplink at a macro base station that employs a zero-forcing detector and we obtain a novel lower bound as well as its approximation. According to the simple and near-exact analytical expression, we observe that the ideal way to improve the SE is by increasing the MUE density and the base station antennas synchronously rather than increasing them individually. Furthermore, a large value of path loss exponent has a positive effect on the SE due to the reduced aggregated interference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mono(μ-oxo) dicopper cores present in the pores of Cu-ZSM-5 are active for the partial oxidation of methane to methanol. However, copper on the external surface reduces the ratio of active, selective sites to unselective sites. More efficient catalysts are obtained by controlling the copper deposition during synthesis. Herein, the external exchange sites of ZSM-5 samples were passivated by bis(trimethylsilyl) trifluoroacetamide (BSTFA) followed by calcination, promoting selective deposition of intraporous copper during aqueous copper ion exchange. At an optimum level of 1–2 wt % SiO2, IR studies showed a 64 % relative reduction in external copper species and temperature-programmed oxidation analysis showed an associated increase in the formation of methanol compared with unmodified Cu-ZSM-5 samples. It is, therefore, reported that the modified zeolites contained a significantly higher proportion of active, selective copper species than their unmodified counterparts with activity for partial methane oxidation to methanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How can GPU acceleration be obtained as a service in a cluster? This question has become increasingly significant due to the inefficiency of installing GPUs on all nodes of a cluster. The research reported in this paper is motivated to address the above question by employing rCUDA (remote CUDA), a framework that facilitates Acceleration-as-a-Service (AaaS), such that the nodes of a cluster can request the acceleration of a set of remote GPUs on demand. The rCUDA framework exploits virtualisation and ensures that multiple nodes can share the same GPU. In this paper we test the feasibility of the rCUDA framework on a real-world application employed in the financial risk industry that can benefit from AaaS in the production setting. The results confirm the feasibility of rCUDA and highlight that rCUDA achieves similar performance compared to CUDA, provides consistent results, and more importantly, allows for a single application to benefit from all the GPUs available in the cluster without loosing efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cysteine cathepsins, such as cathepsin S (CTSS), are implicated in the pathology of a wide range of diseases and are of potential utility as diagnostic and prognostic biomarkers. In previous work, we demonstrated the potency and efficiency of a biotinylated diazomethylketone (DMK)-based activity-based probe (ABP), biotin-PEG-LVG-DMK, for disclosure of recombinant CTSS and CTSS in cell lysates. However, the limited cell permeability of both the biotin and spacer groups restricted detection of CTSS to cell lysates. The synthesis and characterisation of a cell permeable ABP to report on intracellular CTSS activity is reported. The ABP, Z-PraVG-DMK, a modified peptidyl diazomethylketone, was based on the N-terminus of human cystatin motif (Leu-Val-Gly). The leucine residue was substituted for the alkyne-bearing proparcylglycine to facilitate conjugation of an azide-tagged reporter group using click chemistry, following irreversible inhibition of CTSS. When incubated with viable Human Embryonic Kidney 293 cells, Z-PraVG-DMK permitted disclosure of CTSS activity following cell lysis and rhodamine azide conjugation, by employing standard click chemistry protocols. Furthermore, the fluorescent tag facilitated direct detection of CTSS using in-gel fluorescent scanning, obviating the necessity for downstream biotin-streptavidin conjugation and detection procedures.