35 resultados para Angular coefficient
Resumo:
We present R-Matrix with time dependence (RMT) calculations for the photoionization of helium irradiated by an EUV laser pulse and an overlapping IR pulse with an emphasis on the anisotropy parameters of the sidebands generated by the dressing laser field. We investigate how these parameters depend on the amount of atomic structure included in the theoretical model for two-photon ionization. To verify the accuracy of the RMT approach, our theoretical results are compared with experiment.
Resumo:
Microbial interactions depend on a range of biotic and environmental variables, and are both dynamic and unpredictable. For some purposes, and under defined conditions, it is nevertheless imperative to evaluate the inhibitory efficacy of microbes, such as those with potential as biocontrol agents. We selected six, phylogenetically diverse microbes to determine their ability to inhibit the ascomycete Fusarium
coeruleum, a soil-dwelling pathogen of potato tubers that causes the storage disease dry rot. Interaction assays, where colony development was quantified (for both fungal pathogen and potential control agents), were therefore carried out on solid media. The key parameters that contributed to, and were indicative of, inhibitory efficacy were identified as: fungal growth-rates (i) prior to contact with the biocontrol
agent and (ii) if/once contact with the biocontrol agent was established (i.e. in the zone of mixed
culture), and (iii) the ultimate distance traveled by the fungal mycelium. It was clear that there was no correlation between zones of fungal inhibition and the overall reduction in the extent of fungal colony development. An inhibition coefficient was devised which incorporated the potential contributions of distal inhibition of fungal growth-rate; prevention of mycelium development in the vicinity of the biocontrol
agent; and ability to inhibit plant-pathogen growth-rate in the zone of mixed culture (in a ratio of 2:2:1). The values derived were 84.2 for Bacillus subtilis (QST 713), 74.0 for Bacillus sp. (JC12GB42), 30.7 for Pichia anomala (J121), 19.3 for Pantoea agglomerans (JC12GB34), 13.9 for Pantoea sp. (S09:T:12), and
21.9 (indicating a promotion of fungal growth) for bacterial strain (JC12GB54). This inhibition coefficient, with a theoretical maximum of 100, was consistent with the extent of F. coeruleum-colony development (i.e. area, in cm2) and assays of these biocontrol agents carried out previously against Fusarium
spp., and other fungi. These findings are discussed in relation to the dynamics and inherent complexity of natural ecosystems, and the need to adapt models for use under specific sets of conditions.
Resumo:
A mutant strain (UV4) of the soil bacterium Pseudomonas putida, containing toluene dioxygenase, has been used in the metabolic oxidation of 1,2-dihydrobenzocyclobutene 12 dagger and the related substrates 1,2-dihydrobenzocyclobuten-1-ol 13 and biphenylene 33. Stable angular cis-monohydrodiol metabolites (1R,2S)-bicyclo[4.2.0]octa-3,5-diene-1,2 7, (1S,2S,8S)-bicyclo[4.2.0]octa-3,5-diene-1,2,8-triol 8 and biphenylene-cis-1,8b-diol 9, isolated from each of these substrates, have been structurally and stereochemically assigned. The structure, enantiopurity and absolute configuration of the other cis-diol metabolites, (2R,3S)-bicyclo[4.2.0]octa-1(6),4-diene-2,3-diol 14 and cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene 16, and the benzylic oxidation bioproducts, 1,2-dihydrobenzocyclobuten-1-ol 13, 1,2-dihydrobenzocyclobuten-1-one 15 and 2-hydroxy-1,2-dihydrobenzocyclobuten-1-one 17, obtained from 1,2-dihydrobenzocyclobutene and 1,2-dihydrobenzocyclobuten-1-ol, have been determined with the aid of chiral stationary-phase HPLC, NMR and CD spectroscopy, and stereochemical correlation. X-Ray crystallographic methods have been used in the determination of absolute configuration of the di-camphanates 27 (from diol 7) and 32 (from diol 9), and the di-MTPA ester 29 (from diol 14) of the corresponding cis-diol metabolites. The metabolic sequence involved in the formation of bioproducts derived from 1,2-dihydrobenzocyclobutene 12 has been investigated.
Resumo:
This study provides a novel meanline modeling approach for centrifugal compressors. All compressors analyzed are of the automotive turbocharger variety and have typical upstream geometry with no casing treatments or preswirl vanes. Past experience dictates that inducer recirculation is prevalent toward surge in designs with high inlet shroud to outlet radius ratios; such designs are found in turbocharger compressors due to the demand for operating range. The aim of the paper is to provide further understanding of impeller inducer flow paths when operating with significant inducer recirculation. Using three-dimensional (3D) computational fluid dynamics (CFD) and a single-passage model, the flow coefficient at which the recirculating flow begins to develop and the rate at which it grows are used to assess and correlate work and angular momentum delivered to the incoming flow. All numerical modeling has been fully validated using measurements taken from hot gas stand tests for all compressor stages. The new modeling approach links the inlet recirculating flow and the pressure ratio characteristic of the compressor. Typically for a fixed rotational speed, between choke and the onset of impeller inlet recirculation the pressure ratio rises gradually at a rate dominated by the aerodynamic losses. However, in modern automotive turbocharger compressors where operating range is paramount, the pressure ratio no longer changes significantly between the onset of recirculation and surge. Instead the pressure ratio remains relatively constant for reducing mass flow rates until surge occurs. Existing meanline modeling techniques predict that the pressure ratio continues to gradually rise toward surge, which when compared to test data is not accurate. A new meanline method is presented here which tackles this issue by modeling the direct effects of the recirculation. The result is a meanline model that better represents the actual fluid flow seen in the CFD results and more accurately predicts the pressure ratio and efficiency characteristics in the region of the compressor map affected by inlet recirculation.
Resumo:
Social networks generally display a positively skewed degree distribution and higher values for clustering coefficient and degree assortativity than would be expected from the degree sequence. For some types of simulation studies, these properties need to be varied in the artificial networks over which simulations are to be conducted. Various algorithms to generate networks have been described in the literature but their ability to control all three of these network properties is limited. We introduce a spatially constructed algorithm that generates networks with constrained but arbitrary degree distribution, clustering coefficient and assortativity. Both a general approach and specific implementation are presented. The specific implementation is validated and used to generate networks with a constrained but broad range of property values. © Copyright JASSS.