76 resultados para Anchorage implants
Resumo:
Purpose The aim of this study is to improve the drug release properties of antimicrobial agents from hydrophobic biomaterials using using an ion pairing strategy. In so doing antimicrobial agents may be eluted and maintained over a sufficient time period thereby preventing bacterial colonisation and subsequent biofilm formation on medical devices. Methods The model antimicrobial agent was chlorhexidine and the selected fatty acid counter ions were capric acid, myristic acid and stearic acid. The polymethyl methacrylate films were loaded with 2% of fatty acid:antimicrobial agent at the following molar ratios; 0.5:1M, 1:1M and 2:1M and thermally polymerized using azobisisobutyronitrile initiator. Drug release experiments were subsequently performed over a 3-month period and the mass of drug released under sink conditions (pH 7.0, 37oC) quantified using a validated HPLC-UV method. Results In all platforms, a burst of chlorhexidine release was observed over the initial 24-hour period. Similar release kinetics were observed between the formulations during the initial 28 days. However, as time progressed, the chlorhexidine baseline plateaued after 56 days whereas formulations containing the counterions appeared to continuously elute linearly with time. As can be observed in figure 1, the rank order of total chlorhexidine release in the presence of 0.5M fatty acid was myristic acid (40%) > capric acid (35%) > stearic acid (30%)> chlorhexidine baseline (15%). Conclusion The incorporation of fatty acids within the formulation significantly improved chlorhexidine solubility within both the monomer and the polymer and enhanced the drug release kinetics over the period of study. This is attributed to the greater diffusivity of chlorhexidine through PMMA in the presence of fatty acids. In th absence of fatty acids, chlorhexidine release was facilitated by dissolution of surface associated drug particles. This study has illustrated the ability of fatty acids to modulate chlorhexidine release from a model biomaterial through enhanced diffusivity. This strategy may prove advantageous for improved medical devices with enhanced resistance to infection.
Resumo:
BRCA1 is a well described breast cancer susceptibility gene thought to be involved primarily in DNA repair. However, mutation within the BRCA1 transcriptional domain is also implicated in neoplastic transformation of mammary epithelium, but responsible mechanisms are unclear. Here we show in a rat mammary model system that wild type (WT) BRCA1 specifically represses the expression of osteopontin (OPN), a multifunctional estrogen-responsive gene implicated in oncogenic transformation, particularly that of the breast. WT.BRCA1 selectively binds OPN-activating transcription factors estrogen receptor alpha, AP-1, and PEA3, inhibits OPN promoter transactivation, and suppresses OPN mRNA and protein both from an endogenous gene and a relevant model inducible gene. WT.BRCA1 also inhibits OPN-mediated neoplastic transformation characterized by morphology change, anchorage-independent growth, adhesion to fibronectin, and invasion through Matrigel. A mutant BRCA1 allele (Mut.BRCA1) associated with familial breast cancer lacks OPN suppressor effects, binds to WT.BRCA1, and impedes WT.BRCA1 suppression of OPN. Stable transfection of rat breast tumor cell lines with Mut.BRCA1 dramatically up-regulates OPN protein and induces anchorage independent growth. In human primary breast cancer, BRCA1 mutation is significantly associated with OPN overexpression. Taken together, these data suggest that BRCA1 mutation may confer increased tissue-specific cancer risk, in part by disruption of BRCA1 suppression of OPN gene transcription.
Resumo:
This paper reports the initial response of atomic nitrogen doped diamond like carbon (DLC) to endothelial cells in vitro. The introduction of nitrogen atoms/molecules to the diamond like carbon structures leads to an atomic structural change favorable to the attachment of human micro-vascular enclothelial cells. Whilst the semi-conductivity induced by nitrogen in DLC is thought to play a part, the increase in the inion-bonded N atoms and N-2 molecules in the atomic doped species (with the exclusion of the charged species) seems to contribute to the improved attachment of human microvascular endothelial cells. The increased endothelial attachment is associated with a lower work function and slightly higher water contact angle in the atomic doped films, where the heavy charged particles are excluded. The films used in the study were synthesized by the RF PECVD technique followed by post deposition doping with nitrogen, and afterwards the films were characterized by XPS, Raman spectroscopy, SIMS and Kelvin probe. The water contact angles were measured, and the counts of the adherent endothelial cells on the samples were carried out. This study is relevant and contributory to improving biocompatibility of surgical implants and prostheses.