62 resultados para Amphipod
Resumo:
1. In a series of laboratory experiments, we assessed the predatory nature of the native Irish amphipod, Gammarus duebeni celticus, and the introduced G. pulex, towards the mayfly nymph Baetis rhodani. We also investigated alterations in microhabitat use and drift behaviour of B. rhodani in the presence of Gammarus, and indirect predatory interactions with juvenile Atlantic salmon, Salmo salar. 2. In trials with single predators and prey, B. rhodani survival was significantly lower when Gammarus were free to interact with nymphs as than when Gammarus were isolated from them. The invader G. pulex reduced the survival of B. rhodani more rapidly than did the native G. d. celticus. Both Gammarus spp. were active predators. 3. In `patch' experiments, B. rhodani survival was significantly lower both when G. pulex and G. d. celticus were present, although the effect of the two Gammarus species did not differ. Again, active predation of nymphs by Gammarus was observed. Significantly more nymphs occurred on the top and sides of a tile, and per capita drifts were significantly higher, when Gammarus were present. Baetis rhodani per capita drift was also significantly higher in the presence of the introduced G. pulex than with the native G. d. celticus. 4. Gammarus facilitated predation by salmon parr of B. rhodani by significantly increasing fish–nymph encounters on exposed gravel and in the drift. There were no differential effects of the two Gammarus spp. on fish –B. rhodani encounters or consumption. 5. We conclude that Gammarus as a predator can have lethal, nonlethal, direct and indirect effects in freshwaters. We stress the need for recognition of this predatory role when assigning Gammarus spp. to a `Functional Feeding Group'.
Resumo:
Background. Biological monitors are increasingly important in 'Biological Early Warning Systems' (BEWS) for monitoring water quality. This study examines the freshwater amphipod Crangonyx pseudogracilis as a potential new indicator species when used in the Multispecies Freshwater Biomonitor (MFB). The MFB is an online continuous biomonitor which uses impedance conversion to record behavioural responses of vertebrates and invertebrates.
Resumo:
Automated sediment toxicity testing and biomonitoring has grown rapidly. This study tested the suitability of the marine amphipod Corophium volutator (Pallas, 1766) for sediment biomonitoring using the Multispecies Freshwater Biomonitor (MFB). Two experiments were undertaken to (1) characterize individual behaviors of C. volutator using the MFB and (2) examine behavioral changes in response to sediment spiked with the pesticide Bioban. Four behaviors were visually identified (walking, swimming, grooming and falling) and characterized in the MFB as different patterns of locomotor activity (0-2 Hz range). Ventilation was not visually observed but was detected by the MFB (2-8 Hz). No clear diel activity patterns were detected. The MFB detected an overall increase in C. volutator locomotor activity after Bioban addition to the sediments (56, 100, 121 mg kg(-1)). C. volutator was more active (both locomotion and ventilation) in the water column than the spiked sediment. C. volutator appears a sensitive and appropriate species for behavioral sediment toxicity assessment and biomonitoring. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Biotic interactions such as predation and competition can influence aquatic communities at small spatial scales, but they are expected to be overridden by environmental factors at large scales. The continuing threat to freshwater biodiversity of biological invasions indicates that biotic factors do, however, have important structuring roles. In Irish rivers, the native amphipod Gammarus duebeni celticus has become locally extinct, ostensibly through differential predation by the more aggressive and introduced G. pulex. This mechanism explains impacts of G. pulex at within-river spatial scales on native macroinvertebrate community diversity, including declines in ephemeropterans, plecopterans, dipterans and oligochaetes. To determine if these patterns are predictable at larger spatial scales, we assessed patterns in native macroinvertebrate communities across river sites of the Erne catchment in 1998 and 1999, in conjunction with the distribution of G. pulex and G. d. celticus. In both years, G. pulex dominated invaded sites, whereas G. d. celticus occurred at low abundance in uninvaded sites. In both years, invaded sites had lower diversity and fewer pollution sensitive invertebrate species than un-invaded sites. Community ordination in 1998 showed that invaded sites had higher conductivity, smaller substrate particle size and comprised a lower proportion of pollution sensitive taxa including Ephemeroptera and Plecoptera. In contrast, in 1999, conductivity was the only variable explaining site ordination along axis 1, but was unable to separate sites with respect to invasion status. A second explanatory axis separated sites with respect to invasion status, with invaded sites having fewer taxa, including lower abundance of ephemeropterans, dipterans and plecopterans. Laboratory experiments examined the potential role of differential predation between the two Gammarus species in explaining these taxon specific patterns in the field. Survival of the ephemeropterans, Ephemerella ignita and Ecdyonurus venosus and the isopod, Asellus aquaticus, was lower when interacting with G. pulex than with G. d. celticus. This study indicates that G. putex may alter invertebrate community structure at scales beyond those detected within individual rivers. However, effects may be influenced by gradients in physico-chemistry, which may be temporal or depend on catchment characteristics. Invasions by amphipods have increased globally, thus comprehensive assessments of their impacts and of other aquatic invaders, may only be apparent when studies are conducted at a range of spatio-temporal scales.
Resumo:
In the mate-guarding amphipod, Gammarus pulex, the enlarged male posterior gnathopods have been variously suggested to function to grasp and subdue the female, to be used as weapons in fights between males, to signal to the female the male presence and stimulate moult accelaration, egg development or egg extrusion. These hypotheses were tested in a series of experiments, the results of which reveal an unexpected function. Ablation of the posterior gnathopods of males showed that they were neither necessary for, nor advantageous in, establishment and/ or maintenance of precopula mate guarding, with or without competition with intact males. Furthermore, these appendages do not function to advance female moult, or stimulate egg development or extrusion. However, only males with intact posterior gnathopods were able to copulate. We also show that females require a full copulation of several bouts to extrude eggs. We conclude that the function of the posterior gnathopods is to facilitate copulation and suggest future studies focus on the selective pressures acting on copulating males.
Resumo:
In animal contests, individuals can either engage in mutual assessment of both their own and their opponent's resource-holding potential (RHP) and adjust their behaviour according to estimated differences, or instead persist in accordance with thresholds determined by assessment of just their own RHP. We examined the predictions of alternative mutual assessment and self-assessment models for decision rules in contest resolution during struggles between males over females in precopula in the amphipod Gammarus pulex. Contest duration was positively related to the weight of the loser but not the weight of the winner. Our results support the hypothesis that males rely on information about their own RHP in determining contest behaviour and do not use information about their opponent. Fighting was energetically costly, and energy reserves were depleted during contests. Contest duration was associated with the physiological state of the loser (but not the winner) at the end of the contest, and to a lesser extent his size, further supporting self-assessment. (c) 2006 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
The amphipod Gammarus pulex is an intermediate host to the acanthocephalan fish parasite Echinorhynchus truttae. Gammarus pulex has a wide trophic repertoire, feeding as a herbivore, detritivore and predator. In this study an examination was made of the effects of E. truttae parasitism on components of the G. pulex diet: stream-conditioned leaves, dead chironomids and live juvenile isopods Asellus aquaticus. Over 21 days, parasitism had no effect on daily feeding rates or wet weights of G. pulex fed on leaves or chironomids. Parasitism had a significant effect on the number of A. aquaticus killed by G. pulex, with parasitized individuals killing significantly fewer than their unparasitized counterparts. In addition, unparasitized amphipods killed all size classes of A. aquaticus indiscriminately, whereas parasitized animals tended to kill the smaller size classes. The impacts of the parasitism of G. pulex throughout the wider freshwater community are discussed.
Resumo:
Studies of biological invasions predominantly stress threats to biodiversity through the elimination and replacement of native species. However, we must realise that resident communities may often be capable of integrating invaders, leading to patterns of coexistence. Within the past ninety years, three freshwater amphipod species have invaded Northern Ireland the North American Gammarus tigrinus and Crangonyx pseudogracilis, plus the European G. pulex. These species have come into contact with the ubiquitous native species, G. duebeni celticus. This study examined spatiotemporal patterns of stability of single and mixed species assemblages in an invaded lake. Lough Beg and its associated rivers were surveyed in summer 1994 and winter 1995, and a selection of stations re-sampled in summer one and five years later. All possible combinations of the four amphipod species were found. Although species presence/absence was stable between seasons at the scale of the whole lough, it was extremely fluid at the scale of individual sites, 82% of which changed in species composition between seasons. Overall mean amphipod abundance was similar across 5 distinguishable habitat types, but there were differences in species compositions among these habitats. In addition, although co-occurrences of Gammarus species did not differ from random, there was a strong negative association between Gammarus spp. and C. pseudogracilis. This latter pattern was at least in part generated by the better tolerance of C. pseudogracilis to lower water quality. A review of previous studies indicates that the exclusion of C. pseudogracilis by Gammarus species from high water quality areas is likely to involve biotic interaction. Thus, overall, co-existence of the four species, which is clearly dynamic and scale-dependent, appears promoted by spatial and temporal habitat heterogeneity. However, biotic interactions may also play a role in local exclusions. Since the three introduced species have not eliminated the native species, and each successive invasion has not replaced the previous invader, this study demonstrates that freshwater invaders may integrate with native communities leading to coexistence and increased species diversity.
Resumo:
Populations of Gammarus duebeni celticus, previously the only amphipod species resident in the rivers of the Lough Neagh catchment, N. Ireland, have been subjected to invasion by G. pulex from the British mainland. Numerous previous studies have investigated the potential behavioural mechanisms, principally differential mutual predation, underlying the replacement of G. d. celticus by G. pulex in Irish waters, and the mutually exclusive distributions of these species in Britain and mainland Europe. However, the relative degree of influence of abiotic versus biotic factors in structuring these amphipod communities remains unresolved. This study used principal component analysis (PCA) to distinguish physico-chemical parameters that have significant roles in determining the current distribution of G. pulex relative to G. d. celticus in L. Neagh rivers. We show that the original domination of rivers by the native G. d, celticus has changed radically, with many sites in several rivers containing either both species or only G. pulex. G. pulex was more abundant than the G. d. celticus in sites with low dissolved oxygen levels. This was reflected in the macroinvertebrate assemblages associated with G. pulex in these sites, which tended to be those tolerant of low biological water quality. The present study thus emphasizes the importance of the habitat template, particularly water quality, for Gammarus spp. interactions. If rivers become increasingly stressed by organic pollution, it is probable the range expansion of G. pulex will continue. Because these two species are not ecological equivalents, the outcomes of G. pulex incursions into G. d. celticus sites may ultimately depend on the prevailing physico-chemical regimes in each site.
Resumo:
While we can usually understand the impacts of invasive species on recipient communities, invasion biology lacks methodologies that are potentially more predictive. Such tools should ideally be straightforward and widely applicable. Here, we explore an approach that compares the functional responses (FRs) of invader and native amphipod crustaceans. Dikerogammarus villosus is a Ponto-Caspian amphipod currently invading Europe and poised to invade North America. Compared with other amphipods that it actively replaces in fresh-waters, D. villosus exhibited significantly greater predation, consuming significantly more prey with a higher type II FR. This corroborates the known dramatic field impacts of D. villosus on invaded communities. In another species, FRs were nearly identical in invasive and native ranges. We thus propose that if FRs of other taxa and trophic groups follow such general patterns, this methodology has potential in predicting future invasive species impacts.
Resumo:
1. Assessing the effects on communities of invasive species is often confounded by environmental factors. In Irish rivers, the introduced amphipod Gammarus pulex replaces the native G. duebeni celticus in lowland stretches. The two amphipods are associated with different macroinvertebrate communities, which may in part be the result of natural longitudinal physicochemical change. However, this hinders assessment of any direct community impacts of the invasive as compared with the native species. Here, we report on a fortuitous circumstance that allowed us to uncouple the community effects of Gammarus species from environmental differences.
Resumo:
Using data from field introduction experiments with Gammarus spp. conducted in the rivers of a small island, commencing in 1949, with resampling in the 60s, 70s, 80s, 90s and finally in 2005, we aimed to examine the long-term interaction of the native freshwater amphipod Gammarus duebeni celticus with the introduced G. pulex. Using physico-chemical data from a 2005 island-wide survey, we also aimed to find what environmental factors could influence the distribution of the two species.
Resumo:
In attempting to understand the distributions of both introduced species and the native species on which they impact, there is a growing trend to integrate studies of behaviour with more traditional life history/ecological approaches. The question of what mechanisms drive the displacement of the freshwater amphipod Gammarus duebeni by the often introduced G pulex is presented as a case study Patterns of displacement are well documented throughout Europe, but the speed and direction of displacement between these species can be varied. From early studies proposing interspecific competition as causal in these patterns, I review research progress to date. I show there has been no evidence for interspecific competition operating, other than the field patterns themselves, a somewhat tautological argument. Rather, the increased recognition of behavioural attributes with respect to the cannibalistic and predatory nature of these species gave rise to a series of studies unravelling the processes driving field patterns. Both species engage in 'intraguild predation' (IGP), with moulting females particularly vulnerable to predation by congeneric males. G pulex is more able both to engage in and avoid this interaction with G duebeni. However, several factors mediate the strength and asymmetry of this IGP, some biotic (e.g. parasitism) and others abiotic (e.g. water chemistry). Further, a number of alternative hypotheses that may account for the displacement (hybridization; parasite transmission) have been tested and rejected. While interspecific competition has been modelled mathematically and found to be a weak interaction relative to IGP, mechanisms of competition between these Gammarus species remain largely untested empirically. Since IGP may be finely balanced in some circumstances, I conclude that the challenge to detect interspecific competition remains and we require assessment of its role, if any, in the interaction between these species. Appreciation of behavioural attributes and their mediation should allow us to more fully understand, and perhaps predict, species introductions and resultant distributions.
Resumo:
We examined the trade-off between the behaviours associated with predator avoidance and mate acquisition in the mate-guarding amphipod crustacean Gammarus duebeni. We used laboratory experiments to investigate the impact of olfactory predator cues on activity, mate choice and mate-guarding behaviour of males and females. Pair formation declined under perceived risk of predation, reflecting reduced activity of both males and females and hence a reduced likelihood of encountering a mate. We also observed a reduction in the choosiness of both males and females. Under increased perceived predation risk, assessment of the female by the male was more likely to be followed by pair formation, and males showed a nonsignificant trend towards reduced discrimination in favour of large females and were less tenacious in their pair bond when they paired during exposure to predator cues. Females also showed less resistance behaviour, suggesting that both males and females trade off the costs of maximizing current reproductive success against the benefits of predator avoidance for survival and reproduction in the future. We discuss the implications of such context-dependent mating behaviours for ecological interactions between species and suggest that predators, via the effects of perceived predation risk on mate choice and mate guarding in the prey species, induce trait-mediated indirect effects with the potential to influence population dynamics and community structure. (C) 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
We used field surveys and transplant experiments to elucidate the relative roles of physico-chemical regime and intraguild predation in determining the generally mutually exclusive distributions of native and invader freshwater amphipod species. Field surveys showed that the native Gammarus duebeni celticus dominates the shoreline of Lough Neagh, N. Ireland, with some co-occurrence with the N. American invader G. tigrinus. However, the latter species dominates the deeper areas of the mid-Lough. Transplant experiments showed no difference in survival of the native and invader in single species 'bioassay tubes' placed along the shoreline. However, there was significantly higher survival of the invader compared with the native in single species tubes placed in the mid-Lough. In mixed species tubes on the shoreline, the native killed and ate the invader, with no reciprocal interaction, leading to significant reductions of the invader. However, the invader had significantly higher survival than the native in mixed species tubes in the mid-Lough, with no evidence. of predation between the two species. These results indicate that, whereas differential intraguild predation may determine domination of the shoreline by the native, differential physico-chemical tolerances may be major determinants of the domination of the mid-Lough by the invader. This study emphasises the need to consider the habitat template in conjunction with biotic interactions before attempting to draw conclusions about mechanisms determining relative distribution patterns of native and invasive species.