34 resultados para Ammonium, oxidation rate
Resumo:
Cyanobacterial toxins present in drinking water sources pose a considerable threat to human health. Conventional water treatment systems have proven unreliable for the removal of these toxins and hence new techniques have been investigated. Previous work has shown that TiO2 photocatalysis effectively destroys microcystin-LR in aqueous solutions, however non-toxic by-products were detected. It has been shown that photocatalytic reactions are enhanced by utilisation of alternative electron acceptors. We report here enhanced photocatalytic degradation of microcystin-LR following the addition of hydrogen peroxide to the system. It was also found that hydrogen peroxide with UV illumination alone was capable of decomposing microcystin-LR although at a much slower rate than found for TiO2. No HPLC detectable by-products were found when the TiO2/UV/H2O2 system was used indicating that this method is more effective than TiO2/UV alone. Results however indicated that only 18% mineralisation occurred with the TiO2/UV/H2O2 system and hence undetectable by-products must still be present. At higher concentrations hydrogen peroxide was found to compete with microcystin-LR for surface sites on the catalyst but at lower peroxide concentrations this competitive adsorption was not observed. Toxicity studies showed that both in the presence and absence of H2O2 the microcystin solutions were detoxified. These findings suggest that hydrogen peroxide greatly enhances the photocatalytic oxidation of microcystin-LR.
Resumo:
A comparative study between a classic and a wireless electrochemical promotion experiment was undertaken as a tool towards the better understanding of both systems. The catalytic modification of a platinum catalyst for ethylene oxidation was studied. The catalyst was supported on yttria-stabilised-zirconia (YSZ), a known pure oxide ion conductor, for the classic experiment and La 0.6Sr0.4Co0.2Fe0.8O 3-δ-a mixed oxide ion electronic conductor-was used for the wireless experiment. The two systems showed certain similarities in terms of the reaction classification (in both cases electrophobic behaviour was observed) and the promotion mechanism. Significant difference was observed in the time scales and the reversibility of the induced rate modification. © 2008 Springer Science+Business Media B.V.
Resumo:
High resolution synchrotron radiation core level photoemission measurements have been used to undertake a comparative study ofthe high temperature thermal stability ofthe ammonium sulphide passivated InGaAs surface and the same surface following the atomic layer deposition (ALD) of an ultrathin (∼1 nm) Al2O3 layer. The solution based ex situ sulphur passivation was found to be effective at removing a significant amount of the native oxides and protecting the surface against re-oxidation upon air exposure. The residual interfacial oxides which form between sulphur passivated InGaAs and the ultrathin Al2O3 layer can be substantially removed at high temperature (up to 700 ◦C) without impacting on the InGaAs stoichiometry while significant loss of indium was recorded at this temperature on the uncovered sulphur passivated InGaAs surface.
Resumo:
In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test.