44 resultados para Ambipolar transistors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plasma dynamics resulting from the simultaneous impact, of two equal, ultra-intense laser pulses, in two spatially separated spots, onto a dense target is studied via particle-in-cell simulations. The simulations show that electrons accelerated to relativistic speeds cross the target and exit at its rear surface. Most energetic electrons are bound to the rear surface by the ambipolar electric field and expand along it. Their current is closed by a return current in the target, and this current configuration generates strong surface magnetic fields. The two electron sheaths collide at the midplane between the laser impact points. The magnetic repulsion between the counter-streaming electron beams separates them along the surface normal direction, before they can thermalize through other beam instabilities. This magnetic repulsion is also the driving mechanism for the beam-Weibel (filamentation) instability, which is thought to be responsible for magnetic field growth close to the internal shocks of gamma-ray burst jets. The relative strength of this repulsion compared to the competing electrostatic interactions, which is evidenced by the simulations, suggests that the filamentation instability can be examined in an experimental setting. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768426]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic semiconductors have already found commercial applications in for example displays with organic light-emitting diodes (OLEDs) and great advances are also being made in other areas, such as organic field-effect transistors and organic solar cells. [1] The organic semicondutor group of materials known as metal phthalocyanines (MPc’s) is interesting for applications such as large area solar cells due to their optoelectronic properties coupled with the possibility of easily and cheaply fabricating thin films of MPc’s. [1, 2]

Many of the properties of organic semiconductors, such as magnetism, light absorption and charge transport, show orientational anisotropy. [2, 3] To maximise the efficiency of a device based on these materials it is therefore important to study the molecular orientation in films and to assess the influence of different growth conditions and substrate treatments. X-ray diffraction is a well established and powerful technique for studying texture (and hence molecular orientation)_in crystalline materials, but cannot provide any information about amorphous or nanocrystalline films. In this paper we present a continuous wave X-band EPR study using the anisotropy of the CuPc EPR spectrum [4] to determine the orientation effects in different types of CuPc films. From these measurements we also gain insight into the molecular arrangement of films of CuPc mixed with the isomorphous H2Pc and with C60 in films typical of real solar cell systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the ability to engineer ferroelectricity in HfO2 thin films, manufacturable and highly scaled MFM capacitors and MFIS-FETs can be implemented into a CMOS-environment. NVM properties of the resulting devices are discussed and contrasted to existing perovskite based FRAM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new variant of Class-EF power amplifier (PA), the so-called third-harmonic-peaking Class-EF, is presented. It inherits a soft-switching operation from the Class-E PA and a low peak switch voltage from the Class-F PA. More importantly, the new topology allows operations at higher frequencies and permits deployment of large transistors which is normally prohibited since they are always accompanied with high output capacitances. Using a simple transmission-line load network, the PA is synthesized to satisfy Class-EF impedances at fundamental frequency, third harmonic, and all even harmonics as well as to simultaneously provide an impedance matching to 50-Ω load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The buried oxide (BOX) layer in silicon on insulator (SOI) was replaced by a compound buried layer (CBL) containing layers of SiO2, polycrystalline silicon (polysilicon), and SiO2. The undoped polysilicon in the CBL acted as a dielectric with a higher thermal conductivity than SiO2. CBL provides a reduced thermal resistance with the same equivalent oxide thickness as a standard SiO2 buried layer. Thermal resistance was further reduced by lateral heat flow through the polysilicon. Reduction in thermal resistance by up to 68% was observed, dependent on polysilicon thickness. CBL SOI substrates were designed and manufactured to achieve a 40% reduction in thermal resistance compared with an 1.0-μm SiO2 BOX. Power bipolar transistors with an active silicon layer thickness of 13.5 μm manufactured on CBL SOI substrates showed a 5%-17% reduction in thermal resistance compared with the standard SOI. This reduction was dependent on transistor layout geometry. Between 65% and 90% of the heat flow from these power transistors is laterally through the thick active silicon layer. Analysis confirmed that CBL SOI provided a 40% reduction in the vertical path thermal resistance. Devices employing thinner active silicon layers will achieve the greater benefit from reduction in vertical path thermal resistance offered by CBL SOI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulated-gate bipolar transistor (IGBT) power modules find widespread use in numerous power conversion applications where their reliability is of significant concern. Standard IGBT modules are fabricated for general-purpose applications while little has been designed for bespoke applications. However, conventional design of IGBTs can be improved by the multiobjective optimization technique. This paper proposes a novel design method to consider die-attachment solder failures induced by short power cycling and baseplate solder fatigue induced by the thermal cycling which are among major failure mechanisms of IGBTs. Thermal resistance is calculated analytically and the plastic work design is obtained with a high-fidelity finite-element model, which has been validated experimentally. The objective of minimizing the plastic work and constrain functions is formulated by the surrogate model. The nondominated sorting genetic algorithm-II is used to search for the Pareto-optimal solutions and the best design. The result of this combination generates an effective approach to optimize the physical structure of power electronic modules, taking account of historical environmental and operational conditions in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes an in situ diagnostic and prognostic (D&P) technology to monitor the health condition of insulated gate bipolar transistors (IGBTs) used in EVs with a focus on the IGBTs' solder layer fatigue. IGBTs' thermal impedance and the junction temperature can be used as health indicators for through-life condition monitoring (CM) where the terminal characteristics are measured and the devices' internal temperature-sensitive parameters are employed as temperature sensors to estimate the junction temperature. An auxiliary power supply unit, which can be converted from the battery's 12-V dc supply, provides power to the in situ test circuits and CM data can be stored in the on-board data-logger for further offline analysis. The proposed method is experimentally validated on the developed test circuitry and also compared with finite-element thermoelectrical simulation. The test results from thermal cycling are also compared with acoustic microscope and thermal images. The developed circuitry is proved to be effective to detect solder fatigue while each IGBT in the converter can be examined sequentially during red-light stopping or services. The D&P circuitry can utilize existing on-board hardware and be embedded in the IGBT's gate drive unit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative point-of-care (POC) devices are the next generation for serological disease diagnosis. Whilst pathogen serology is typically performed by centralized laboratories using Enzyme-Linked ImmunoSorbent Assay (ELISA), faster on-site diagnosis would infer improved disease management and treatment decisions. Using the model pathogen Bovine Herpes Virus-1 (BHV-1) this study employs an extended-gate field-effect transistor (FET) for direct potentiometric serological diagnosis. BHV-1 is a major viral pathogen of Bovine Respiratory Disease (BRD), the leading cause of economic loss ($2 billion annually in the US only) to the cattle and dairy industry. To demonstrate the sensor capabilities as a diagnostic tool, BHV-1 viral protein gE was expressed and immobilized on the sensor surface to serve as a capture antigen for a BHV-1-specific antibody (anti-gE), produced in cattle in response to viral infection. The gE-coated immunosensor was shown to be highly sensitive and selective to anti-gE present in commercially available anti-BHV-1 antiserum and in real serum samples from cattle with results being in excellent agreement with Surface Plasmon Resonance (SPR) and ELISA. The FET sensor is significantly faster than ELISA (<10 min), a crucial factor for successful disease intervention. This sensor technology is versatile, amenable to multiplexing, easily integrated to POC devices, and has the potential to impact a wide range of human and animal diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expansion of a magnetized high-pressure plasma into a low-pressure ambient medium is examined with particle-in-cell simulations. The magnetic field points perpendicular to the plasma's expansion direction and binary collisions between particles are absent. The expanding plasma steepens into a quasi-electrostatic shock that is sustained by the lower-hybrid (LH) wave. The ambipolar electric field points in the expansion direction and it induces together with the background magnetic field a fast E cross B drift of electrons. The drifting electrons modify the background magnetic field, resulting in its pile-up by the LH shock. The magnetic pressure gradient force accelerates the ambient ions ahead of the LH shock, reducing the relative velocity between the ambient plasma and the LH shock to about the phase speed of the shocked LH wave, transforming the LH shock into a nonlinear LH wave. The oscillations of the electrostatic potential have a larger amplitude and wavelength in the magnetized plasma than in an unmagnetized one with otherwise identical conditions. The energy loss to the drifting electrons leads to a noticeable slowdown of the LH shock compared to that in an unmagnetized plasma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of their extraordinary structural and electrical properties, two dimensional materials are currently being pursued for applications such as thin-film transistors and integrated circuit. One of the main challenges that still needs to be overcome for these applications is the fabrication of air-stable transistors with industry-compatible complementary metal oxide semiconductor (CMOS) technology. In this work, we experimentally demonstrate a novel high performance air-stable WSe2 CMOS technology with almost ideal voltage transfer characteristic, full logic swing and high noise margin with different supply voltages. More importantly, the inverter shows large voltage gain (~38) and small static power (Pico-Watts), paving the way for low power electronic system in 2D materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we synthesize large-area thin films of a conjugated, imine-based, two-dimensional covalent organic framework at the solution/air interface. Thicknesses between ∼2-200 nm are achieved. Films can be transferred to any desired substrate by lifting from underneath, enabling their use as the semiconducting active layer in field-effect transistors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epitaxial van der Waals (vdW) heterostructures of organic and layered materials are demonstrated to create high-performance organic electronic devices. High-quality rubrene films with large single-crystalline domains are grown on h-BN dielectric layers via vdW epitaxy. In addition, high carrier mobility comparable to free-standing single-crystal counterparts is achieved by forming interfacial electrical contacts with graphene electrodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene, with its unique electronic and structural qualities, has become an important playground for studying adsorption and assembly of various materials including organic molecules. Moreover, organic/graphene vertical structures assembled by van der Waals interaction have potential for multifunctional device applications. Here, we investigate structural and electrical properties of vertical heterostructures composed of C60 thin film on graphene. The assembled film structure of C60 on graphene is investigated using transmission electron microscopy, which reveals a uniform morphology of C60 film on graphene with a grain size as large as 500 nm. The strong epitaxial relations between C60 crystal and graphene lattice directions are found, and van der Waals ab initio calculations support the observed phenomena. Moreover, using C60-graphene heterostructures, we fabricate vertical graphene transistors incorporating n-type organic semiconducting materials with an on/off ratio above 3 × 10(3). Our work demonstrates that graphene can serve as an excellent substrate for assembly of molecules, and attained organic/graphene heterostructures have great potential for electronics applications.