39 resultados para Amalric, of Bène, d. ca. 1206.
Resumo:
PURPOSE: To investigate the role of feedback by Ca?-sensitive plasma-membrane ion channels in endothelin 1 (Et1) signaling in vitro and in vivo. Methods. Et1 responses were imaged from Fluo-4-loaded smooth muscle in isolated segments of rat retinal arteriole using two-dimensional (2-D) confocal laser microscopy. Vasoconstrictor responses to intravitreal injections of Et1 were recorded in the absence and presence of appropriate ion channel blockers using fluorescein angiograms imaged using a confocal scanning laser ophthalmoscope. Results. Et1 (10 nM) increased both basal [Ca?](i) and the amplitude and frequency of Ca?-waves in retinal arterioles. The Ca?-activated Cl?-channel blockers DIDS and 9-anthracene carboxylic acid (9AC) blocked Et1-induced increases in wave frequency, and 9AC also inhibited the increase in amplitude. Iberiotoxin, an inhibitor of large conductance (BK) Ca?-activated K?-channels, increased wave amplitude in the presence of Et1 but had no effect on frequency. None of these drugs affected basal [Ca?](i). The voltage-operated Ca?-channel inhibitor nimodipine inhibited wave frequency and amplitude and also lowered basal [Ca?](i) in the presence of Et1. Intravitreal injection of Et1 caused retinal arteriolar vasoconstriction. This was inhibited by DIDS but not by iberiotoxin or penitrem A, another BK-channel inhibitor. Conclusions. Et1 evokes increases in the frequency of arteriolar Ca?-waves in vitro, resulting in vasoconstriction in vivo. These responses, initiated by release of stored Ca?, also require positive feedback via Ca?-activated Cl?-channels and L-type Ca?-channels.
Resumo:
We present simultaneous and continuous observations of the Halpha, Hbeta, He I D-3, Na I D-1,D-2 doublet and the Ca II H&K lines for the RS CVn system HR 1099. The spectroscopic observations were obtained during the MUSICOS 1998 campaign involving several observatories and instruments, both echelle and long-slit spectrographs. During this campaign, HR 1099 was observed almost continuously for more than 8 orbits of 2.(d)8. Two large optical flares were observed, both showing an increase in the emission of Halpha, Ca II H K, Hbeta and He I D-3 and a strong filling-in of the Na I D-1, D-2 doublet. Contemporary photometric observations were carried out with the robotic telescopes APT-80 of Catania and Phoenix-25 of Fairborn Observatories. Maps of the distribution of the spotted regions on the photosphere of the binary components were derived using the Maximum Entropy and Tikhonov photometric regularization criteria. Rotational modulation was observed in Halpha and He I D-3 in anti-correlation with the photometric light curves. Both flares occurred at the same binary phase (0.85), suggesting that these events took place in the same active region. Simultaneous X-ray observations, performed by ASM on board RXTE, show several flare-like events, some of which correlate well with the observed optical flares. Rotational modulation in the X-ray light curve has been detected with minimum flux when the less active G5 V star was in front. A possible periodicity in the X-ray flare-like events was also found.
Resumo:
The steps involved in the biosynthesis of the ADP-L-glycero-beta-D-manno-heptose (ADP-L-beta-D-heptose) precursor of the inner core lipopolysaccharide (LPS) have not been completely elucidated. In this work, we have purified the enzymes involved in catalyzing the intermediate steps leading to the synthesis of ADP-D-beta-D-heptose and have biochemically characterized the reaction products by high-performance anion-exchange chromatography. We have also constructed a deletion in a novel gene, gmhB (formerly yaeD), which results in the formation of an altered LPS core. This mutation confirms that the GmhB protein is required for the formation of ADP-D-beta-D-heptose. Our results demonstrate that the synthesis of ADP-D-beta-D-heptose in Escherichia coli requires three proteins, GmhA (sedoheptulose 7-phosphate isomerase), HldE (bifunctional D-beta-D-heptose 7-phosphate kinase/D-beta-D-heptose 1-phosphate adenylyltransferase), and GmhB (D,D-heptose 1,7-bisphosphate phosphatase), as well as ATP and the ketose phosphate precursor sedoheptulose 7-phosphate. A previously characterized epimerase, formerly named WaaD (RfaD) and now renamed HldD, completes the pathway to form the ADP-L-beta-D-heptose precursor utilized in the assembly of inner core LPS.
Resumo:
The electronic stopping power of H and He moving through gold is obtained to high accuracy using time-evolving density-functional theory, thereby bringing usual first principles accuracies into this kind of strongly coupled, continuum nonadiabatic processes in condensed matter. The two key unexplained features of what observed experimentally have been reproduced and understood: (i)The nonlinear behavior of stopping power versus velocity is a gradual crossover as excitations tail into the d-electron spectrum; and (ii)the low-velocity H/He anomaly (the relative stopping powers are contrary to established theory) is explained by the substantial involvement of the d electrons in the screening of the projectile even at the lowest velocities where the energy loss is generated by s-like electron-hole pair formation only. © 2012 American Physical Society.
Resumo:
Introduction: Juvenile idiopathic arthritis (JIA) comprises a poorly understood group of chronic autoimmune diseases with variable clinical outcomes. We investigated whether the synovial fluid (SF) proteome could distinguish a subset of patients in whom disease extends to affect a large number of joints.
Methods: SF samples from 57 patients were obtained around time of initial diagnosis of JIA, labeled with Cy dyes and separated by two-dimensional electrophoresis. Multivariate analyses were used to isolate a panel of proteins which distinguish patient subgroups. Proteins were identified using MALDI-TOF mass spectrometry with expression verified by immunochemical methods. Protein glycosylation status was confirmed by hydrophilic interaction liquid chromatography.
Results: A truncated isoform of vitamin D binding protein (VDBP) is present at significantly reduced levels in the SF of oligoarticular patients at risk of disease extension, relative to other subgroups (p < 0.05). Furthermore, sialylated forms of immunopurified synovial VDBP were significantly reduced in extended oligoarticular patients (p < 0.005).
Conclusion: Reduced conversion of VDBP to a macrophage activation factor may be used to stratify patients to determine risk of disease extension in JIA patients.
Resumo:
Comet C/2012 S1 (ISON) is unique in that it is a dynamically new comet derived from the Oort cloud reservoir of comets with a sun-grazing orbit. Infrared (IR) and visible wavelength observing campaigns were planned on NASA's Stratospheric Observatory For Infrared Astronomy (SOFIA) and on National Solar Observatory Dunn (DST) and McMath-Pierce Solar Telescopes, respectively. We highlight our early results. SOFIA (+FORCAST [1]) mid- to far-IR images and spectroscopy (~5-35 μm) of the dust in the coma of ISON are to be obtained by the ISON-SOFIA Team during a flight window 2013 Oct 21-23 UT (r_h≈1.18 AU). Dust characteristics, identified through the 10 μm silicate emission feature and its strength [2], as well as spectral features from cometary crystalline silicates (Forsterite) at 11.05-11.2 μm, and near 16, 19, 23.5, 27.5, and 33 μm are compared with other Oort cloud comets that span the range of small and/or highly porous grains (e.g., C/1995 O1 (Hale-Bopp) [3,4,5] and C/2001 Q4 (NEAT) [6]) to large and/or compact grains (e.g., C/2007 N4 (Lulin) [7] and C/2006 P1 (McNaught) [8]). Measurement of the crystalline peaks in contrast to the broad 10 and 20 μm amorphous silicate features yields the cometary silicate crystalline mass fraction [9], which is a benchmark for radial transport in our protoplanetary disk [10]. The central wavelength positions, relative intensities, and feature asymmetries for the crystalline peaks may constrain the shapes of the crystals [11]. Only SOFIA can look for cometary organics in the 5-8 μm region. Spatially resolved measurements of atoms and simple molecules from when comet ISON is near the Sun (r_h<0.4 AU, near Nov-20--Dec-03 UT) were proposed for by the ISON-DST Team. Comet ISON is the first comet since comet Ikeya-Seki (1965f) [12,13] suitable for studying the alkalai metals Na and K and the atoms specifically attributed to dust grains including Mg, Si, Fe, as well as Ca. DST's Horizontal Grating Spectrometer (HGS) measures 4 settings: Na I, K, C2 to sample cometary organics (along with Mg I), and [O I] as a proxy for activity from water [14] (along with Si I and Fe I). State-of-the-art instruments that will also be employed include IBIS [15], which is a Fabry-Perot spectral imaging system that concurrently measures lines of Na, K, Ca II, or Fe, and ROSA (CSUN/QUB) [16], which is a rapid imager that simultaneously monitors Ca II or CN. From McMath-Pierce, the Solar-Stellar Spectrograph also will target ISON (320-900 nm, R~21,000, r_h
Resumo:
We employ CaII K and Na I D interstellar absorption-line spectroscopy of early-type stars in the Large and Small Magellanic Clouds (LMC, SMC) to investigate the large- and small-scale structure in foreground intermediate- and high-velocity clouds (I/HVCs). Data include FLAMES-GIRAFFE CaII K observations of 403 stars in four open clusters, plus FEROS or UVES spectra of 156 stars in the LMC and SMC. The FLAMES observations are amongst the most extensive probes to date of CaII structures on ∼20 arcsec scales in Magellanic I/HVCs. From the FLAMES data within a 0 ∘.∘.∘.5 field of view, the CaII K equivalent width in the I/HVC components towards three clusters varies by factors of ≥10. There are no detections of molecular gas in absorption at intermediate or high velocities, although molecular absorption is present at LMC and Galactic velocities towards some sightlines. The FEROS/UVES data show CaII K I/HVC absorption in ∼60 per cent of sightlines. The range in the CaII/Na I ratio in I/HVCs is from –0.45 to +1.5 dex, similar to previous measurements for I/HVCs. In 10 sightlines we find CaII/O I ratios in I/HVC gas ranging from 0.2 to 1.5 dex below the solar value, indicating either dust or ionization effects. In nine sightlines I/HVC gas is detected in both H I and CaII at similar velocities, implying that the two elements form part of the same structure.
Resumo:
Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.
Resumo:
Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a key enzyme in cellular energy metabolism and provides approximately 40% of the proton-motive force that is utilized during mitochondrial ATP production. The dysregulation of complex I function – either genetically, pharmacologically, or metabolically induced – has severe pathophysiological consequences that often involve an imbalance in the production of reactive oxygen species (ROS). Slow transition of the active (A) enzyme to the deactive, dormant (D) form takes place during ischemia in metabolically active organs such as the heart and brain. The reactivation of complex I occurs upon reoxygenation of ischemic tissue, a process that is usually accompanied by an increase in cellular ROS production. Complex I in the D-form serves as a protective mechanism preventing the oxidative burst upon reperfusion. Conversely, however, the D-form is more vulnerable to oxidative/nitrosative damage. Understanding the so-called active/deactive (A/D) transition may contribute to the development of new therapeutic interventions for conditions like stroke, cardiac infarction, and other ischemia-associated pathologies. In this review, we summarize current knowledge on the mechanism of A/D transition of mitochondrial complex I considering recently available structural data and site-specific labeling experiments. In addition, this review discusses in detail the impact of the A/D transition on ROS production by complex I and the S-nitrosation of a critical cysteine residue of subunit ND3 as a strategy to prevent oxidative damage and tissue damage during ischemia–reperfusion injury.