61 resultados para Alfalfa seedling bioassay
Resumo:
An enzyme labeled immunosorbent assay (ELISA) and surface plasmon resonance (SPR) biosensor assay for the detection of paralytic shellfish poisoning (PSP) toxins were developed and a comparative evaluation was performed. A polyclonal antibody (BC67) used in both assay formats was raised to saxitoxin–jeffamine–BSA in New Zealand white rabbits. Each assay format was designed as an inhibition assay. Shellfish samples (n = 54) were evaluated by each method using two simple rapid extraction procedures and compared to the AOAC high performance liquid chromatography (HPLC) and the mouse bioassay (MBA). The results of each assay format were comparable with the HPLC and MBA methods and demonstrate that an antibody with high sensitivity and broad specificity to PSP toxins can be applied to different immunological techniques. The method of choice will depend on the end-users needs. The reduced manual labor and simplicity of operation of the SPR biosensor compared to ELISA, ease of sample extraction and superior real time semi-quantitative analysis are key features that could make this technology applicable in a high-throughput monitoring unit.
Resumo:
The objectives were to determine if the skin secretion of the European yellow-bellied toad (Bombina variegata), in common with other related species, contains a bradykinin inhibitor peptide and to isolate and structurally characterize this peptide. Materials and Methods: Lyophilized skin secretion obtained from this toad was subjected to reverse phase HPLC fractionation with subsequent bioassay of fractions for antagonism of the bradykinin activity using an isolated rat tail artery smooth muscle preparation. Subsequently, the primary structure of the peptide was established by a combination of microsequencing, mass spectroscopy, and molecular cloning, following which a synthetic replicate was chemically synthesised for bioassay. Results: A single peptide of molecular mass 2300.92 Da was resolved in HPLC fractions of skin secretion and its primary structure determined as IYNAIWP-KH-NK-KPGLL-. Database interrogation with this sequence indicated that this peptide was encoded by skin kininogen-1 previously cloned from B. variegata. The blank cycles were occupied by cysteinyl (C) residues and the peptide was located toward the C-terminus of the skin kininogen, and flanked N-terminally by a classical -KR- propeptide convertase processing site. The peptide was named IC-20 in accordance (I = N-terminal isoleucine, C = C-terminal cysteine, 20 = number of residues). Like the natural peptide, its synthetic replicate displayed an antagonism of bradykinin-induced arterial smooth muscle relaxation. Conclusion: IC-20 represents a novel bradykinin antagonizing peptide from amphibian skin secretions and is the third such peptide found to be co-encoded with bradykinins within skin kininogens.
Resumo:
We present two novel bioassays to be used in the examination of plant-parasitic nematode host-finding ability. The host-finding 'pipette-bulb assay' was constructed from modelled Pasteur pipette bulbs and connecting barrels using parafilm fastenings. This assay examines the direction of second-stage juvenile (J2) migration in response to a host seedling, through a moistened sand substrate, which underlies terminal upward-facing 'seedling bulbs', one containing a host seedling in potting compost, the other with only potting compost. An equal watering regime through both upward-facing seedling bulbs creates a directional concentration gradient of host diffusate chemotactic factors. Positive chemotactic stimuli cause the J2 to orientate and migrate towards the host plant. We present validation data collected from assays of the root-knot nematode, Meloidogyne incognita, and the potato cyst nematode, Globodera pallida, which indicate a highly significant positive attraction of J2 of both species to respective host plants. This represents a simple, quick and inexpensive method of assessing host-finding behaviour in the laboratory. We consider that the pipette-bulb assay improves on previous host-finding/chemo-attraction assays through creating a more biologically relevant environment for experimental J2; analysis is quick and easy, allowing the straightforward interpretation of results. In addition, we have developed an 'agar trough' sensory assay variant which we believe can be used rapidly to ratify nematode responses to chemical gustatory or olfactory cues. This was constructed from a water agar substrate such that two counting wells were connected by a raised central trough, all flooded with water. Two small water agar plugs were dehydrated briefly in an oven and then hydrated in either an attractant, repellent or water control; these plugs were then placed in the terminal counting wells and subsequently leached the attractant or repellent to form a concentration gradient along the central trough, which contained the initial J2 innoculum. Our data show that both M. incognita and G. pallida J2 are positively attracted to host diffusates. In addition, they displayed a strong repulsion in response to 1 M NaCl2. J2 of M. incognita displayed a mild aversion to a non-host oak root diffusate, whereas G. pallida J2 displayed a strong aversion to the same non-host diffusate; neither species responded to a compost leachate. We believe that the agar trough assay improves on previous methods by facilitating rapid diffusion of attractant or repellents. Both of the aforementioned assays were designed as tools to assess the impact of RNAi-based reverse genetics screens for gene targets involved in chemosensory orientation.
Resumo:
Paralytic shellfish poisoning (PSP) toxins are produced by certain marine dinoflagellates and may accumulate in bivalve molluscs through filter feeding. The Mouse Bioassay (MBA) is the internationally recognised reference method of analysis, but it is prone to technical difficulties and regarded with increasing disapproval due to ethical reasons. As such, alternative methods are required. A rapid surface plasmon resonance (SPR) biosensor inhibition assay was developed to detect PSP toxins in shellfish by employing a saxitoxin polyclonal antibody (R895). Using an assay developed for and validated on the Biacore Q biosensor system, this project focused on transferring the assay to a high-throughput, Biacore T100 biosensor in another laboratory. This was achieved using a prototype PSP toxin kit and recommended assay parameters based on the Biacore Q method. A monoclonal antibody (GT13A) was also assessed. Even though these two instruments are based on SPR principles, they vary widely in their mode of operation including differences in the integrated mu-fluidic cartridges, autosampler system, and sensor chip compatibilities. Shellfish samples (n = 60), extracted using a simple, rapid procedure, were analysed using each platform, and results were compared to AOAC high performance liquid chromatography (HPLC) and MBA methods. The overall agreement, based on statistical 2 x 2 comparison tables, between each method ranged from 85% to 94.4% using R895 and 77.8% to 100% using GT13A. The results demonstrated that the antibody based assays with high sensitivity and broad specificity to PSP toxins can be applied to different biosensor platforms. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Saxitoxin and its analogs, the causative agents of paralytic shellfish poisoning (PSP), are a worldwide threat to seafood safety. Effective monitoring of potentially contaminated fishing areas as well as screening of seafood samples is necessary to adequately protect the public. While many analytical methods exist for detecting paralytic shellfish toxins (PSTs), each technique has challenges associated with routine use. One recently developed method [1] that overcomes ethical or performance-related issues of other techniques is the surface plasmon resonance (SPR) bioassay. Notwithstanding the advantages of this method, much research remains in optimizing the sensor substrate and assay conditions to create a robust technique for rapid and sensitive measurement of PSTs. This manuscript describes a more rigorous and stable SPR inhibition immunoassay through optimization of the surface chemistry as well as determination of optimum mixture ratios and mixing times. The final system provides rapid substrate formation (18 h saxitoxin conjugation with low reagent consumption), contains a reference channel for each assay, and is capable of triplicate measurements in a single run with detection limits well below the regulatory action level. Published by Elsevier B.V.
Resumo:
This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area.
Resumo:
The aerobactin gene cluster in pColV-K30 consists of five genes (iucABCD iutA); four of these (iucABCD) are involved in aerobactin biosynthesis, whereas the fifth one (iutA) encodes the ferriaerobactin outer membrane receptor. iucD encodes lysine:N6-hydroxylase, which catalyzes the first step in aerobactin biosynthesis. Regardless of the method used for cell rupture, we have consistently found that IucD remains membrane bound, and repeated efforts to achieve a purified and active soluble form of the enzyme have been unsuccessful. To circumvent this problem, we have constructed recombinant IucD proteins with modified amino termini by creating three in-frame gene fusions of IucD to the amino-terminal amino acids of the cytoplasmic enzyme beta-galactosidase. Two of these constructs resulted in the addition to the iucD coding region of a hydrophilic leader sequence of 13 and 30 amino acids. The other construct involved the deletion of the first 47 amino acids of the IucD amino terminus and the addition of 19 amino acids of the amino terminus of beta-galactosidase. Cells expressing any of the three recombinant IucD forms were found to produce soluble N6-hydroxylysine. One of these proteins, IucD439, was purified to homogeneity from the soluble fraction of the cell lysates, and it was capable of participating in the biosynthesis of aerobactin, as determined in vitro by a cell-free system and in vivo by a cross-feeding bioassay. A medium ionic strength of 0.25 (250 mM NaCl) or higher was required to maintain the protein in a catalytically functional, tetrameric state.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The aerobactin-mediated iron uptake system encoded by pColV-K30 and other ColV plasmids has been associated with the ability of Escherichia coli strains to cause disease. We investigated whether the pColV-K30 aerobactin system is present in E. coli K1 VW187 isolated from a human neonate with meningitis. This strain exhibited a functional aerobactin-mediated iron uptake system, as assessed by a cross-feeding bioassay and by its sensitivity to cloacin, a bacteriocin that recognizes the outer membrane receptor for iron-aerobactin complexes. By using a variety of techniques, we could not find any plasmid harboring the aerobactin genes. Hybridization of restriction endonuclease-cleaved chromosomal DNA from strain VW187 with various clones containing subsets of the pColV-K30 aerobactin region showed that the aerobactin genes were located on a 10.5-kilobase-pair chromosomal HindIII restriction fragment which also contained IS1-like insertion sequences. The chromosomal aerobactin region showed a high degree of conservation when compared with the homologous region in plasmid pColV-K30, although it was located on a different restriction endonuclease site environment.
Resumo:
A study was conducted to investigate the sediment health and water quality of the River Sagana, Kenya, as impacted by the local tanning industry. Chemical analysis identified the main chemical pollutants (pentachlorophenols and chromium) while a bioassay addressed pollutant bioavailability. The bioassay, exploiting the luminescence response of a lux marked bacterial biosensor, was coupled to a dehydrogenase and Dapnia magna test to determine toxicity effects on sediments. Results highlighted the toxicity of the tannery effluent to the sediments at the point of discharge (64% of control bioluminescence) with gradual improvement downstream. There was a significant increase in dehydrogenase downstream, with the enzyme activity attaining a peak at 600 m, also indicating a gradual reduction of toxicity. Biological oxygen demand (19.56 mg L(-1)) dissolved oxygen (3.97 mg L(-1)) and high lethal dose value (85%) of D. magna also confirmed an initial stress at the point of discharge and recovery downstream. Optical density of surface water demonstrated an increase in suspended particulates and colour after the discharge point, eventually decreasing beyond 400 m. In conclusion, the study highlighted the importance of understanding the biogeochemistry of river systems impacted by industries discharging effluent into them and the invaluable role of a biosensor-based ecotoxicological approach to address effluent hazards, particularly in relation to river sediments.
Resumo:
A bacterial bioassay, suitable for rapid screening to assess the relative toxicity of xenobiotic contaminated groundwater has been developed. The quantitative bioassay utilizes a decline in luminescence of the lux marked soil bacterium Pseudomonas fluorescens on exposure to contaminated groundwaters from which effective concentration (EC) values can be assessed and compared. P. fluorescens was most sensitive to semi-volatile organics in groundwaters but there was no correlation between EC value and chemical content. The sensitivity and reproducibility of the P. fluorescens bioassay was compared with that of Microtox and results showed that mean EC50 values for diluted ground water replicate samples were 20% and 18% respectively. This suggested that the P. fluorescens bioassay was as applicable to groundwater screening as the widely used Microtox bioassay.
Resumo:
Purpose: Hunan province is well-known for its extensive base-metal extraction and smelting industries. However, the legacies of excavation operations, transportation, and selective smelting activities within Hunan have resulted in the generation of large quantities of mine wastes, which will become the sources of metal contamination in the environment. Thus, there is an increasingly important health issue underlying the study of arable land pollution and transfer of As, Cd, and Pb in the paddy soil–rice system.
Materials and methods: Paddy soils collected from mining- and smelting-impacted areas in Hunan province and rice seed (Oryza sativa L. cv Jia Hua-1) were used for pot experiments under greenhouse conditions. One 30-day-old seedling was transplanted into one pot containing 5.0 kg pretreated soil. At harvest, rice grains and shoots were washed with distilled water to remove surface soil, and oven-dried at 65°C for 96 h until a constant weight was reached. Roots were washed carefully with distilled water for the next process of extracting iron plaque using dithionite–citrate–bicarbonate solution. Total concentrations of As, Cd, and Pb in soil and rice plant tissues were measured by inductively coupled plasma mass spectrometer.
Results and discussion: Total concentrations of As, Cd, and Pb in the soils collected from 12 mining- and smelting-impacted areas in Hunan province were much higher than Hunan background values and exceeded the maximum concentration limit for soils set by the Ministry of Environmental Protection. The yields of rice grain from Pb/Zn mining and smelting sites were negatively correlated to overall pollution scores. Distributions of As, Cd, and Pb in rice plant followed: root >> shoot > husk > whole grain. About 30.1–88.1% of As, 11.2–43.5% of Cd, and 14.0–33.9% of Pb were accumulated in iron plaque on root surfaces.
Conclusions: High concentrations of As, Cd, and Pb are observed in paddy soils from mining- and smelting-impacted areas in Hunan province, indicating those paddy soils suffer serious combined heavy metal contamination. In particular, Cd is the dominant contaminant followed by As and Pb in paddy soils from most locations. The distributions of As, Cd, and Pb in rice tissue were: root >> shoot > husk > whole grain. Concentrations of Pb in all whole grain and of As and Cd in 50% of whole grain samples exceeded Chinese Hygienic Standard values for food.
Resumo:
Paralytic shellfish poisoning (PSP) is a potentially fatal human health condition caused by the consumption of shellfish containing high levels of PSP toxins. Toxin extraction from shellfish and from algal cultures for use as standards and analysis by alternative analytical monitoring methods to the mouse bioassay is extensive and laborious. This study investigated whether a selected MAb antibody could be coupled to a novel form of magnetic microsphere (hollow glass magnetic microspheres, brand name Ferrospheres-N) and whether these coated microspheres could be utilized in the extraction of low concentrations of the PSP toxin, STX, from potential extraction buffers and spiked mussel extracts. The feasibility of utilizing a mass of 25 mg of Ferrospheres-N, as a simple extraction procedure for STX from spiked sodium acetate buffer, spiked PBS buffer and spiked mussel extracts was determined. The effects of a range of toxin concentrations (20-300 ng/mL), incubation times and temperature on the capability of the immuno-capture of the STX from the spiked mussel extracts were investigated. Finally, the coated microspheres were tested to determine their efficiency at extracting PSP toxins from naturally contaminated mussel samples. Toxin recovery after each experiment was determined by HPLC analysis. This study on using a highly novel immunoaffinity based extraction procedure, using STX as a model, has indicated that it could be a convenient alternative to conventional extraction procedures used in toxin purification prior to sample analysis.
Resumo:
ABSTRACT (250 words)
BACKGROUND: The mechanism underlying respiratory virus-induced cough hypersensitivity is unknown. Up-regulation of airway neuronal receptors responsible for sensing physical and chemical stimuli is one possibility and the transient receptor potential (TRP) channel family are potential candidates. We have used an in vitro model of sensory neurones and human rhinovirus (HRV-16) to study the effect of virus infection on TRP expression.
METHODS: IMR32 neuroblastoma cells were differentiated in culture to express three TRP channels, TRPV1, TRPA1 and TRPM8. Flow cytometry and qRT-PCR were used to measure TRP channel protein and mRNA levels following inoculation with live virus, inactivated virus, virus- induced soluble factors or pelleted virus particles. Multiplex bioassay was used to determine nerve growth factor (NGF), interleukin (IL)-1ß, IL-6 and IL-8 levels in response to infection.
RESULTS: Early up-regulation of TRPA1 and TRPV1 expression occurred 2 to4 hours post infection. This was independent of replicating virus as virus induced soluble factors alone were sufficient to increase channel expression 50 and 15 fold, respectively. NGF, IL-6 and IL-8 levels, increased in infected cell supernatants, represent possible candidates. In contrast, TRPM8 expression was maximal at 48 hours (9.6 fold) and required virus replication rather than soluble factors
CONCLUSIONS We show for the first time that rhinovirus can infect neuronal cells. Furthermore, infection causes up-regulation of TRP channels by channel specific mechanisms. Increase in TRPA1 and TRPV1 levels can be mediated by soluble factors induced by infection whereas TRPM8 requires replicating virus. TRP channels may be novel therapeutic targets for controlling virus-induced cough.
Resumo:
The requirement of CUL1 for Arabidopsis embryogenesis suggests that Skp1-CUL1-F-box protein (SCF) complexes play important roles during embryo development. Among the 21 Arabidopsis Skp1-like genes (ASKs), it is unknown which ASK gene(s) is essential for embryo development. In this study, we demonstrate a vital role for ASK1 and ASK2 in Arabidopsis embryogenesis and postembryonic development through analysis of the ask1 ask2 double mutant. Our detailed analysis indicates that the double mutations in both ASK1 and ASK2 affect cell division and cell expansion/elongation and cause a developmental delay during embryogenesis and lethality in seedling growth. The expression patterns of ASK1 and ASK2 were examined further and found to be consistent with their roles in embryogenesis and seedling development. We propose that mutations in ASK1 and ASK2 abolish all of the ASK1- and ASK2-based SCF and non-SCF complexes, resulting in alteration of gene expression and leading to defects in growth and development.
Resumo:
Tetrodotoxin (TTX) is a potent neurotoxin emerging in European waters due to increasing ocean temperatures. Its detection in seafood is currently performed as a consequence of using the Association of Analytical Communities (AOAC) mouse bioassay (MBA) for paralytic shellfish poisoning (PSP) toxins, but TTX is not monitored routinely in Europe. Due to ethical and performance-related issues associated with this bioassay, the European Commission has recently published directives extending procedures that may be used for official PSP control. An AOAC-accredited high-performance liquid chromatography (HPLC) method has now been accepted by the European Union as a first action screening method for PSP toxins to replace the MBA. However, this AOAC HPLC method is not capable of detecting TTX, so this potent toxin would be undetected; thereby, a separate method of analysis is required. Surface plasmon resonance (SPR) optical biosensor technology has been proven as a potential alternative screening method to detect PSP toxins in seafood. The addition of a similar SPR inhibition assay for TTX would complement the PSP assay in removing the MBA. The present report describes the development and single laboratory validation in accordance with AOAC and IUPAC guidelines of an SPR method to be used as a rapid screening tool to detect TTX in the sea snail Charonia lampas lampas, a species which has been implicated in 2008 in the first case of human TTX poisoning in Europe. As no current regulatory limits are set for TTX in Europe, single laboratory validation was undertaken using those for PSP toxins at 800 µg/kg. The decision limit (CCa) was 100 µg/kg, with the detection capability (CCß) found to be =200 µg/kg. Repeatability and reproducibility were assessed at 200, 400, and 800 µg/kg and showed relative standard deviations of 8.3, 3.8, and 5.4 % and 7.8, 8.3, and 3.7 % for both parameters at each level, respectively. At these three respective levels, the recovery of the assay was 112, 98, and 99 %.