83 resultados para Alexander J. Grant -- Welland Canal, Ontario


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigated seepage under hydraulic structures considering flow through the banks of the canal. A computer model, utilizing the finite element method, was used. Different configurations of sheetpile driven under the floor of the structure were studied. Results showed that the transverse extension of sheetpile, driven at the middle of the floor, into the banks of the canal had very little effect on seepage losses, uplift force, and on the exit gradient at the downstream end of the floor. Likewise, confining the downstream floor with sheetpile from three sides was not found effective. When the downstream floor was confined with sheetpile from all sides, this has significantly reduced the exit gradient. Furthermore, all the different configurations of the sheetpile had insignificant effect on seepage losses. The most effective configuration of the sheetpile was the case when two rows of sheetpiles were driven at the middle and at the downstream end of the floor, with the latter sheetpile extended few meters into the banks of the canal. This case has significantly reduced the exit gradient and caused only slight increase in the uplift force when compared to other sheetpile configurations. The present study suggests that two-dimensional analysis of seepage problems underestimates the exit gradient and uplift force on hydraulic structures.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Testate amoebae have been used widely as a proxy of hydrological change in ombrotrophic peatlands, although their response to abiotic controls in other types of mire and fenland palaeo-environments is less well understood. This paper examines the response of testate amoebae to hydroseral and other environmental changes at Mer Bleue Bog, Ontario, Canada, a large ombrotrophic peatland, which evolved from a brackish-water embayment in the early Holocene. Sediments, plant macrofossils and diatoms examined from a 5.99 m core collected from the dome of the bog record six stages of development: i) a quiet, brackish-water riverine phase (prior to ca. 8500 cal BP); ii) a shallow lake (ca. 8500–8200 cal BP); iii) fen (8200–7600 cal BP); iv) transitional mire (7600–6900 cal BP); v) pioneer raised mire (6900–4450 cal BP); and vi) ombrotrophic bog (4450 cal BP-present).

Testate amoebae, notably small (<25 µm diameter) specimens of Centropyxis aculeata type, first appear in low abundances in sediments ascribed to the lacustrine phase. Diatoms from the same horizons record a shallowing in water depth, a decline in salinity and the development of emergent macrophytic vegetation, which may have provided favourable conditions for testate amoeba colonization. The testate amoeba communities of the inferred fen phase are more diverse and include centropyxids, cyclopyxids, Arcellidae and Hyalospheniidae, although the assemblages show some differences to those recently reported in modern European fen environments. The Fen–Bog Transition (FBT) is also dominated by C. aculeata type. The change in testate amoeba communities around this key transition is apparent in the results of Detrended Correspondence Analysis (DCA), and appears to reflect a latent nutrient gradient and a secondary moisture gradient. DCA analyses of plant macrofossil remains around the FBT show a similar trend, although the sensitivity of the two proxies to the inferred environmental changes differs. Comparisons with other regional mid-Holocene peatland records confirm the important influence of reduced effective precipitation on the testate amoeba communities during the initiation and development of Sphagnum-dominated, raised bog communities.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to collect information on the practice of end-of-life (EOL) care in long-term care (LTC) facilities in the Province of Ontario, Canada. A cross-sectional survey of directors of care in all licensed LTC facilities in the province was conducted between September 2003 and April 2004. Directors of care from 426 (76% response rate) facilities completed the postal survey questionnaire. The survey results identified communication problems between service providers and families, inadequate staffing levels to provide quality care to dying residents, and the need for training to improve staff skills in providing EOL care. Directors of care endorsed the use of a number of strategies that would improve the care of dying residents. Logistic regression analysis identified the eight most important items predictive of facility staff having the ability to provide quality EOL care. The findings contribute to the current discussion on policies for meeting the care needs of residents in LTC facilities until life's end. © 2006 Centre for Bioethics, IRCM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the organizational predictors of higher scores on team climate measures as an indicator of the functioning of a family health team (FHT). Design: Cross-sectional study using a mailed survey. Setting: Family health teams in Ontario. Participants: Twenty-one of 144 consecutively approached FHTs; 628 team members were surveyed. Main outcome measures: Scores on the team climate inventory, which assessed organizational culture type (group, developmental, rational, or hierarchical); leadership perceptions; and organizational factors, such as use of electronic medical records (EMRs), team composition, governance of the FHT, location, meetings, and time since FHT initiation. All analyses were adjusted for clustering of respondents within the FHT using a mixed random-intercepts model. Results: The response rate was 65.8% (413 of 628); 2 were excluded from analysis, for a total of 411 participants. At the time of survey completion, there was a median of 4 physicians, 11 other health professionals, and 4 management and clerical staff per FHT. The average team climate score was 3.8 out of a possible 5. In multivariable regression analysis, leadership score, group and developmental culture types, and use of more EMR capabilities were associated with higher team climate scores. Other organizational factors, such as number of sites and size of group, were not associated with the team climate score. Conclusion: Culture, leadership, and EMR functionality, rather than organizational composition of the teams (eg, number of professionals on staff, practice size), were the most important factors in predicting climate in primary care teams.