55 resultados para Aleutian Islands Alaska
Resumo:
Review-Essay
Resumo:
Holocene climates and human impact in the Mediterranean basin have received much attention, but the Maltese Islands in the Central Mediterranean, although a pivotal area, have been little researched. Here, sedimentary and palynological data are presented for three cores from the Holocene coastal and shallowmarine
deposits of the Maltese Islands. These show deforestation from Pinus-Cupressaceae woodland in the early Neolithic, and then a long, but relatively stable history of agriculturally degraded environments to the present day. The major climate events which have affected the Italian and Balkan peninsulas to the
north, and Tunisia to the south, are not reflected in the pollen diagrams from the Maltese Islands because of the strong anthropogenic imprint on the Maltese vegetation from early in the Neolithic. Previous suggestions of environmentally-driven agricultural collapse at the end of the Neolithic appear, however,
to be substantiated and may be linked to regional aridification around 4300 cal. BP. Depopulation in early Medieval times is not supported by the current palynological evidence.
Resumo:
Burning seaweed to produce kelp, valued for its high potash and soda content, was formerly a significant industry in remote coastal areas of Scotland and elsewhere. Given the high concentrations of arsenic in seaweeds, up to 100 mg kg(-1), this study investigates the possibility that the kelp industry caused arsenic contamination of these pristine environments. A series of laboratory-scale seaweed burning experiments was conducted, and analysis of the products using HPLC ICP-MS shows that at least 40% of the arsenic originally in the seaweed could have been released into the fumes. The hypothesis that the burning process transforms arsenic from low toxicity arsenosugars in the original seaweeds (Fucus vesiculosus and Laminaria digitata) to highly toxic inorganic forms, predominantly arsenate, is consistent with As speciation analysis results. A field study conducted on Westray, Orkney, once a major centre for kelp production, shows that elevated arsenic levels (10.7+/-3.0 mg kg(-1), compared to background levels of 1.7+/-0.2 mg kg(-1)) persist in soils in the immediate vicinity of the kelp burning pits. A model combining results from the burning experiments with data from historical records demonstrates the potential for arsenic deposition of 47 g ha(-1) year(-1) on land adjacent to the main kelp burning location on Westray, and for arsenic concentrations exceeding current UK soil guideline values during the 50 year period of peak kelp production.
Permafrost response to last interglacial warming: field evidence from non-glaciated Yukon and Alaska
Resumo:
We present stratigraphic observations from three sites in eastern Beringia - Ch'ijee's Bluff in northern Yukon and nearby exposures on the Old Crow River, the Palisades on the Yukon River in Alaska, and placer mining exposures at Thistle Creek in west-central Yukon - which provide insight into the response of permafrost to regional warming during the last interglaciation. Chronology is based on the presence of Old Crow tephra, an important regional stratigraphic marker that dates to late Marine Isotope Stage 6, supplemented by paleoecology and non-finite C ages on wood-rich organic silts. Old Crow tephra overlies several relict ice wedges at the Palisades and Thistle Creek, indicating that permafrost at these sites did not thaw completely during the last interglaciation. Prominent deposits of last interglacial wood-rich organic silt are present at multiple sites in eastern Beringia, and probably represent accumulations of reworked forest vegetation due to thaw slumping or deposition into thermokarst ponds or depressions. Consistent stratigraphic relations between these deposits, Old Crow tephra, and ice wedge pseudomorphs at our three study sites, and at least six other sites in eastern Beringia, suggest that thaw of shallow permafrost was widespread during the last interglaciation. Limited stratigraphic evidence suggests that thaw was probably on the order of meters, rather than 10s of meters. The ubiquity of shallow permafrost degradation during the last interglaciation suggests that current ground warming may foreshadow widespread near-surface thaw under even modest future warming scenarios. However, the persistence of relict pre-last interglacial ice wedges highlights the potential for the regional antiquity of discontinuous permafrost, and provides compelling field evidence for the long-term resilience of deep permafrost during sustained periods of warmer-than-present climate.
Resumo:
A 40 cm thick primary bed of Old Crow tephra (131 ± 11 ka), an important stratigraphic marker in eastern Beringia, directly overlies a vegetated surface at Palisades West, on the Yukon River in central Alaska. Analyses of insect, bryophyte, and vascular plant macrofossils from the buried surface and underlying organic-rich silt suggest the local presence of an aquatic environment and mesic shrub-tundra at the time of tephra deposition. Autochthonous plant and insect macrofossils from peat directly overlying Old Crow tephra suggest similar aquatic habitats and hydric to mesic tundra environments, though pollen counts indicate a substantial herbaceous component to the regional tundra vegetation. Trace amounts of arboreal pollen in sediments associated with the tephra probably reflect reworking from older deposits, rather than the local presence of trees. The revised glass fission-track age for Old Crow tephra places its deposition closer to the time of the last interglaciation than earlier age determinations, but stratigraphy and paleoecology of sites with Old Crow tephra indicate a late Marine Isotope Stage 6 age. Regional permafrost degradation and associated thaw slumping are responsible for the close stratigraphic and paleoecological relations between Old Crow tephra and last interglacial deposits at some sites in eastern Beringia. © 2009 Elsevier Ltd.
Resumo:
Last interglacial sediments in unglaciated Alaska and Yukon (eastern Beringia) are commonly identified by palaeoecological indicators and stratigraphic position ~2-5m above the regionally prominent Old Crow tephra (124±10ka). We demonstrate that this approach can yield erroneous age assignments using data from a new exposure at the Palisades, a site in interior Alaska with numerous exposures of last interglacial sediments. Tephrochronology, stratigraphy, plant macrofossils, pollen and fossil insects from a prominent wood-rich organic silt unit are all consistent with a last interglacial age assignment. However, six 14C dates on plant and insect macrofossils from the organic silt range from non-finite to 4.0 14C ka BP, indicating that the organic silt instead represents a Holocene deposit with a mixed-age assemblage of organic material. In contrast, wood samples from presumed last interglacial organic-rich sediments elsewhere at the Palisades, in a similar stratigraphic position with respect to Old Crow tephra, yield non-finite 14C ages. Given that local permafrost thaw since the last interglaciation may facilitate reworking of older sediments into new stratigraphic positions, minimum constraining ages based on 14C dating or other methods should supplement age assignments for last interglacial sediments in eastern Beringia that are based on palaeoecology and stratigraphic association with Old Crow tephra.