97 resultados para Airplanes -- Scramjet engines
Resumo:
When orchestrating Web service workflows, the geographical placement of the orchestration engine (s) can greatly affect workflow performance. Data may have to be transferred across long geographical distances, which in turn increases execution time and degrades the overall performance of a workflow. In this paper, we present a framework that, given a DAG-based workflow specification, computes the optimal Amazon EC2 cloud regions to deploy the orchestration engines and execute a workflow. The framework incorporates a constraint model that solves the workflow deployment problem, which is generated using an automated constraint modelling system. The feasibility of the framework is evaluated by executing different sample workflows representative of scientific workloads. The experimental results indicate that the framework reduces the workflow execution time and provides a speed up of 1.3x-2.5x over centralised approaches.
Resumo:
The aim of this work is to investigate an efficient CAD based adjoint process chain for calculating sensitivities of the objective function to the CAD parameter in time scales acceptable for industrial design processes.
Resumo:
Presented is a study that expands the body of knowledge on the effect of in-cycle speed fluctuations on performance of small engines. It uses the engine and drivetrain models developed previously by Callahan, et al. (1) to examine a variety of engines. The predicted performance changes due to drivetrain effects are shown in each case, and conclusions are drawn from those results. The single-cylinder, high performance four-stroke engine showed significant changes in predicted performance compared to the prediction with zero speed fluctuation in the model. Measured speed fluctuations from a firing Yamaha YZ426 engine were applied to the simulation in addition to data from a simple free mass model. Both methods predicted similar changes in performance. The multiple-cylinder, high performance two-stroke engine also showed significant changes in performance depending on the firing configuration. With both engines, the change in performance diminished with increasing mean engine speed. The low output, single-cylinder two-stroke engine simulation showed only a negligible change in performance, even with high amplitude speed fluctuations. Because the torque versus engine speed characteristic for the engine was so flat, this was expected. The cross-charged, multi-cylinder two-stroke engine also showed only a negligible change in performance. In this case, the combination of a relatively high inertia rotating assembly and the multiple cylinder firing events within the revolution smoothing the torque pulsations reduced the speed fluctuation amplitude itself.
Some Fundamental Aspects of the Discharge Coefficients of Cylinder Porting and Ducting Restrictions.
Correlation of simulated and measured noise emissions using a combined 1D/3D computational technique
A generic Engine Simulation Program Applied to the Development of a V6 Automotive Tw0-Stroke Engine.
Resumo:
This paper describes the development of a two-dimensional transient catalyst model. Although designed primarily for two-stroke direct injection engines, the model is also applicable to four-stroke lean burn and diesel applications. The first section describes the geometries, properties and chemical processes simulated by the model and discusses the limitations and assumptions applied. A review of the modeling techniques adopted by other researchers is also included. The mathematical relationships which are used to represent the system are then described, together with the finite volume method used in the computer program. The need for a two-dimensional approach is explained and the methods used to model effects such as flow and temperature distribution are presented. The problems associated with developing surface reaction rates are discussed in detail and compared with published research. Validation and calibration of the model is achieved by comparing predictions with measurements from a flow reactor. While an extensive validation process, involving detailed measurements of gas composition and thermal gradients, has been completed, the analysis is too detailed for publication here and is the subject of a separate technical paper.
Resumo:
Presented is a study that expands the body of knowledge on the effect of in-cycle speed fluctuations on performance of small engines. It uses the methods developed previously by Callahan, et al. (1) to examine a variety of two-stroke engines and one four-stroke engine. The two-stroke engines were: a high performance single-cylinder, a low performance single-cylinder, a high performance multi-cylinder, and a medium performance multi-cylinder. The four-stroke engine was a high performance single-cylinder unit. Each engine was modeled in Virtual Engines, which is a fully detailed one-dimensional thermodynamic engine simulator. Measured or predicted in-cycle speed data were input into the engine models. Predicted performance changes due to drivetrain effects are shown in each case, and conclusions are drawn from those results. The simulations for the high performance single-cylinder two-stroke engine predicted significant in-cycle crankshaft speed fluctuation amplitudes and significant changes in performance when the fluctuations were input into the engine model. This was validated experimentally on a firing test engine based on a Yamaha YZ250. The four-stroke engine showed significant changes in predicted performance compared to the prediction with zero speed fluctuation assumed in the model. Measured speed fluctuations from a firing Yamaha YZ400F engine were applied to the simulation in addition to data from a simple free mass model. Both methods predicted similar fluctuation profiles and changes in performance. It is shown that the gear reduction between the crankshaft and clutch allowed for this similar behavior. The multi-cylinder, high performance two-stroke engine also showed significant changes in performance, in this case depending on the firing configuration. The low output two-stroke engine simulation showed only a negligible change in performance in spite of high amplitude speed fluctuations. This was due to its flat torque versus speed characteristic. The medium performance multi-cylinder two-stroke engine also showed only a negligible change in performance, in this case due to a relatively high inertia rotating assembly and multiple cylinder firing events within the revolution. These smoothed the net torque pulsations and reduced the amplitude of the speed fluctuation itself.