36 resultados para Adsorption model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present research investigates the uptake of phosphate ions from aqueous solutions using acidified laterite (ALS), a by-product from the production of ferric aluminium sulfate using laterite. Phosphate adsorption experiments were performed in batch systems to determine the amount of phosphate adsorbed as a function of solution pH, adsorbent dosage and thermodynamic parameters per fixed P concentration. Kinetic studies were also carried out to study the effect of adsorbent particle sizes. The maximum removal capacity of ALS observed at pH 5 was 3.68 mg P g-1. It was found that as the adsorbent dosage increases, the equilibrium pH decreases, so an adsorbent dosage of 1.0 g L-1 of ALS was selected. Adsorption capacity (qm) calculated from the Langmuir isotherm was found to be 2.73 mg g-1. Kinetic experimental data were mathematically well described using the pseudo first-order model over the full range of the adsorbent particle size. The adsorption reactions were endothermic, and the process of adsorption was favoured at high temperature; the ΔG and ΔH values implied that the main adsorption mechanism of P onto ALS is physisorption. The desorption studies indicated the need to consider a NaOH 0.1M solution as an optimal solution for practical regeneration applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the removal of arsenic from aqueous solutions onto thermally processed dolomite is investigated. The dolomite was thermally processed (charred) at temperatures of 600, 700 and 800 degrees C for 1, 2, 4 and 8 h. Isotherm experiments were carried out on these samples over a wide pH range. A complete arsenic removal was achieved over the pH range studied when using the 800 degrees C charred dolomite. However, at this temperature, thermal degradation of the dolomite weakens its structure due to the decomposition of the magnesium carbonate, leading to a partial dissolution. For this reason, the dolomitic sorbent chosen for further investigations was the 8 h at 700 degrees C material. Isotherm studies indicated that the Langmuir model was successful in describing the process to a better extent than the Freundlich model for the As(V) adsorption on the selected charred dolomite. However, for the As(III) adsorption, the Freundlich model was more successful in describing the process. The maximum adsorption capacities of charred dolomite for arsenite and arsenate ions are 1.846 and 2.157 mg/g, respectively. It was found that both the pseudo first- and second-order kinetic models are able to describe the experimental data (R-2 > 0.980). The data suggest the charring process allows dissociation of the dolomite to calcium carbonate and magnesium oxide, which accelerates the process of arsenic oxide and arsenic carbonate precipitation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactivity of sp2 carbon materials is studied using the adsorption and dissociation of O2 on graphene and graphene oxide as model systems. The reactions on the basal plane, zigzag and armchair edges of graphene and graphene oxide with different oxygen-containing groups are calculated using first principles calculations. Two Brønsted-Evans- Polanyi relationships are identified and an electron delocalization model is suggested to understand the general trend of reactivity for sp2 carbon materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorption of 0.5 monolayer of N adatoms on W{100} results in a sharp (root 2 X root 2)R45 degrees LEED pattern. The only previous quantitative LEED study of this system gave a simple overlayer model with a Pendry R-factor of 0.55. An exhaustive search has been made of possible structures, including a novel vacancy reconstruction, displacive reconstructions and underlayer adsorption. From this work a new overlayer structure is derived with an R(p) value of 0.22, displaying a considerable buckling of 0.27 +/- 0.05 Angstrom within the second W layer and consequently involving large changes in the interlayer spacings of the surface. The N adatom is pseudo-five-fold coordinated to the W surface, bonding to a second-layer W atom with a nearest-neighbour bond length of 2.13 Angstrom and with the four next-nearest-neighbour W atoms in the surface plane at 2.27 Angstrom. The structure does not resolve the work function anomaly observed on this surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of geothermal energy as a source for electricity and district heating has increased over recent decades. Dissolved As can be an important constituent of the geothermal fluids brought to the Earth's surface. Here the field application of laboratory measured adsorption coefficients of aqueous As species on basaltic glass surfaces is discussed. The mobility of As species in the basaltic aquifer in the Nesjavellir geothermal system, Iceland was modelled by the one-dimensional (1D) reactive transport model PHREEQC ver. 2, constrained by a long time series of field measurements with the chemical composition of geothermal effluent fluids, pH, Eh and, occasionally, Fe- and As-dissolved species measurements. Di-, tri- and tetrathioarsenic species (As(OH)S22-, AsS3H2-, AsS33- and As(SH)4-) were the dominant form of dissolved As in geothermal waters exiting the power plant (2.556μM total As) but converted to some extent to arsenite (H3AsO3) and arsenate HAsO42- oxyanions coinciding with rapid oxidation of S2- to S2O32- and finally to SO42- during surface runoff before feeding into a basaltic lava field with a total As concentration of 0.882μM following dilution with other surface waters. A continuous 25-a data set monitoring groundwater chemistry along a cross section of warm springs on the Lake Thingvallavatn shoreline allowed calibration of the 1D model. Furthermore, a series of ground water wells located in the basaltic lava field, provided access along the line of flow of the geothermal effluent waters towards the lake. The conservative ion Cl- moved through the basaltic lava field (4100m) in less than10a but As was retarded considerably due to surface reactions and has entered a groundwater well 850m down the flow path as arsenate in accordance to the prediction of the 1D model. The 1D model predicted a complete breakthrough of arsenate in the year 2100. In a reduced system arsenite should be retained for about 1ka. © 2011 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates the production of activated lignin-chitosan extruded (ALiCE) pellets with controlled particle size distribution (almost spherical: dp ~500‒1000µm) for efficient methylene blue adsorption. The novel preparation method employed in this study successfully produced activated lignin-chitosan pellets. Structural and morphological characterizations were performed using BET, FTIR and SEM-EDX analyses. The influence of contact time, solution pH, ionic strength, initial adsorbate concentration and desorption studies was investigated. The experimental data fitted well with the Langmuir isotherm (R2 = 0.997), yielding a maximum adsorption capacity of 36.25mg/g. The kinetic data indicated that methylene blue (MB) adsorption onto ALiCE can be represented by the pseudo second-order-model with intraparticle processes initially controlling the process of MB adsorption. Overall, these results indicate that the novel ALiCE offers great potential for removing cationic organic pollutants from rivers and streams.