38 resultados para Actuators.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method for the preparation of titania sol–gel derived oxygen sensors based on the ruthenium(II) dye, [Ru(bpy)3]2+, is described. A titania sol–gel paste film was cast onto microscope slides, and the dye ion-paired to the deprotonated, hydroxylated groups on the film's surface from an aqueous solution of the dye at pH 11. The resulting sensor film is extremely oxygen sensitive, with a PO2 (S = 1/2) value (i.e. the partial pressure of oxygen required in order to reduce the original, oxygen free, luminescence intensity by 50%) of 0.011 atm. The sensor undergoes 95% response to oxygen in 4 s, and shows 95% recovery of its luminescence in argon within 7 s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar water disinfection (SODIS) is a well-established inexpensive means of water disinfection in developing countries, but lacks an indicator to illustrate its end-point. A study of the solar UV dosage required for SODIS, in order to achieve a bacteria concentration below the detection limit for: Escherichia coli, Enterococcus spp. and Clostridium perfringens, in water in PET bottles, PE and PE/EVA bags showed disinfection to be most efficient in PE bags, with a solar UV (290–385 nm) dose of 389 kJ m−2 required. In parallel to the disinfection experiments, a range of polyoxometalate, semiconductor photocatalysis and photodegradable dye-based solar UV dosimeter indicators were tested under the same solar UV irradiation conditions. All three types of dosimeter produced indicators that largely and significantly change colour upon exposure to 389 kJ m−2 solar UV; further indicators are reported which change colour at higher doses and hence would be suitable for the less efficient SODIS containers tested. All indicators tested were robust, easy to use and inexpensive so as not to add significantly to the attractive low cost of SODIS. Furthermore, whilst semiconductor photocatalyst and photodegradable dye based indicators are disposable, one-use systems, the polyoxometalate based indicators recover colour in the dark overnight, allowing them to be reused, and hence further decreasing the cost of using indicators during the implementation of the SODIS method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The speed of manufacturing processes today depends on a trade-off between the physical processes of production, the wider system that allows these processes to operate and the co-ordination of a supply chain in the pursuit of meeting customer needs. Could the speed of this activity be doubled? This paper explores this hypothetical question, starting with examination of a diverse set of case studies spanning the activities of manufacturing. This reveals that the constraints on increasing manufacturing speed have some common themes, and several of these are examined in more detail, to identify absolute limits to performance. The physical processes of production are constrained by factors such as machine stiffness, actuator acceleration, heat transfer and the delivery of fluids, and for each of these, a simplified model is used to analyse the gap between current and limiting performance. The wider systems of production require the co-ordination of resources and push at the limits of human biophysical and cognitive limits. Evidence about these is explored and related to current practice. Out of this discussion, five promising innovations are explored to show examples of how manufacturing speed is increasing—with line arrays of point actuators, parallel tools, tailored application of precision, hybridisation and task taxonomies. The paper addresses a broad question which could be pursued by a wider community and in greater depth, but even this first examination suggests the possibility of unanticipated innovations in current manufacturing practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissolved CO2 measurements are usually made using a Severinghaus electrode, which is bulky and can suffer from electrical interference. In contrast, optical sensors for gaseous CO2, whilst not suffering these problems, are mainly used for making gaseous (not dissolved) CO2 measurements, due to dye leaching and protonation, especially at high ionic strengths (>0.01 M) and acidity (<pH 4). This is usually prevented by coating the sensor with a gas-permeable, but ion-impermeable, membrane (GPM). Herein, we introduce a highly sensitive, colourimetric-based, plastic film sensor for the measurement of both gaseous and dissolved CO2, in which a pH-sensitive dye, thymol blue (TB) is coated onto particles of hydrophilic silica to create a CO2-sensitive, TB-based pigment, which is then extruded into low density polyethylene (LDPE) to create a GPM-free, i.e. naked, TB plastic sensor film for gaseous and dissolved CO2 measurements. When used for making dissolved CO2 measurements, the hydrophobic nature of the LDPE renders the film: (i) indifferent to ionic strength, (ii) highly resistant to acid attack and (iii) stable when stored under ambient (dark) conditions for >8 months, with no loss of colour or function. Here, the performance of the TB plastic film is primarily assessed as a dissolved CO2 sensor in highly saline (3.5 wt%) water. The TB film is blue in the absence of CO2 and yellow in its presence, exhibiting 50% transition in its colour at ca. 0.18% CO2. This new type of CO2 sensor has great potential in the monitoring of CO2 levels in the hydrosphere, as well as elsewhere, e.g. food packaging and possibly patient monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An anthraquinone dye, Remazol brilliant blue R, RBBR, is used to create an indicator which can function as: (i) a UV dosimeter, (ii) an O2 indicator and (iii) a ‘Consume within’ indicator, CWI, for fresh, refrigerated foods. The dye is encapsulated in an ink containing a polymer, glycerol and a UV-activated semiconductor photocatalyst, titanium dioxide. When cast as a film, the dye is readily reduced by the TiO2 photocatalyst nanoparticles, thereby changing the colour of the film from blue to yellow, via a transitional green colour. The RBBR indicator is appropriately formulated, and covered with a film of Sellotape, which acts as an O2 barrier, so as to act as a sunburn warning indicator for people with skin type II. In the absence of the layer of Sellotape the RBBR indicator is used as an, albeit slow, sensor for measuring ambient levels of O2. Finally, by keeping the Sellotape layer, a UV-activated, yellow-coloured, RBBR indicator film is found to take ca. 42 h at 5 °C in ambient air to attain a green colour, and, on this basis, it is demonstrated as a possible CWI for refrigerated fresh foods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel, colorimetric, temperature-activated humidity indicator is presented, with a colour change based on the semi-reversible aggregation of thiazine dyes (esp. methylene blue, MB) encapsulated within the polymer, hydroxypropyl cellulose (HPC). The initially purple MB/HPC film is activated by heat treatment at 370 °C for 4 s, at which point the film (with a colour associated with a highly aggregated form of MB; λmax = 530 nm) becomes blue (indicating the presence of monomeric and dimeric MB; i.e. with λmax = 665; 605 nm respectively). The blue, heat-treated MB/HPC films respond to an ambient environment with a relative humidity (RH) exceeding 70% at 21 °C within seconds, returning to their initial purple colour. This colour change is irreversible until the film is heat-treated once more. When exposed to a lower RH of up to ca. 47%, the film is stable in its blue form. In contrast, a MB/HPC film treated only at 220 °C for 15 s also turns a blue colour and responds in the same way to a RH value of ca. 70%, but it is unstable at moderate RH 37-50% values, so that it gradually returns to its purple form over a period of approximately 6 hours. The possible use of the high heat-treated MB/HPC humidity indicator in the packaging of goods that cannot tolerate high RH, such as dry foods and electronics, is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing research has highlighted the effects of changing climates on the occurrence and prevalence of toxigenic Aspergillus species producing aflatoxins. There is concern of the toxicological effects to human health and animal productivity following acute and chronic exposure that may affect the future ability to provide safe and sufficient food globally. Considerable research has focused on the detection of these toxins, based on the physicochemical and biochemical properties of the aflatoxin compounds, in agricultural products for human and animal consumption. As improvements in food security continue more regulations for acceptable levels of aflatoxins have arisen globally; the most stringent in Europe. These regulations are important for developing countries as aflatoxin occurrence is high significantly effecting international trade and the economy. In developed countries analytical approaches have become highly sophisticated, capable of attaining results with high precision and accuracy, suitable for regulatory laboratories. Regrettably, many countries that are affected by aflatoxin contamination do not have resources for high tech HPLC and MS instrumentation and require more affordable, yet robust equally accurate alternatives that may be used by producers, processors and traders in emerging economies. It is especially important that those companies wishing to exploit the opportunities offered by lucrative but highly regulated markets in the developed world, have access to analytical methods that will ensure that their exports meet their customers quality and safety requirements.

This work evaluates the ToxiMet system as an alternative approach to UPLC–MS/MS for the detection and determination of aflatoxins relative to current European regulatory standards. Four commodities: rice grain, maize cracked and flour, peanut paste and dried distillers grains were analysed for natural aflatoxin contamination. For B1 and total aflatoxins determination the qualitative correlation, above or below the regulatory limit, was good for all commodities with the exception of the dried distillers grain samples for B1 for which no calibration existed. For B1 the quantitative R2 correlations were 0.92, 0.92, 0.88 (<250 μg/kg) and 0.7 for rice, maize, peanuts and dried distillers grain samples respectively whereas for total aflatoxins the quantitative correlation was 0.92, 0.94, 0.88 and 0.91. The ToxiMet system could be used as an alternative for aflatoxin analysis for current legislation but some consideration should be given to aflatoxin M1 regulatory levels for these commodities considering the high levels detected in this study especially for maize and peanuts