68 resultados para ALVEOLAR MACROPHAGE PHAGOCYTOSIS
Resumo:
Three members of the Rho family, Cdc42, Rac, and Rho are known to regulate the organization of actin-based cytoskeletal structures. In Bac1.2F5 macrophages, we have shown that Rho regulates cell contraction, whereas Rac and Cdc42 regulate the formation of lamellipodia and filopodia, respectively. We have now tested the roles of Cdc42, Rac, and Rho in colony stimulating factor-1 (CSF-1)-induced macrophage migration and chemotaxis using the Dunn chemotaxis chamber. Microinjection of constitutively activated RhoA, Rac1, or Cdc42 inhibited cell migration, presumably because the cells were unable to polarize significantly in response to CSF-1. Both Rho and Rac were required for CSF-1-induced migration, since migration speed was reduced to background levels in cells injected with C3 transferase, an inhibitor of Rho, or with the dominant-negative Rac mutant, N17Rac1. In contrast, cells injected with the dominant-negative Cdc42 mutant, N17Cdc42, were able to migrate but did not polarize in the direction of the gradient, and chemotaxis towards CSF-1 was abolished.
Resumo:
Strains of the Burkholderia cepacia complex can survive within macrophages by arresting the maturation of phagocytic vacuoles. The bacteria preclude fusion of the phagosome with lysosomes by a process that is poorly understood. Using murine macrophages, we investigated the stage at which maturation is arrested and analyzed the underlying mechanism. Vacuoles containing B. cenocepacia strain J2315, an isolate of the transmissible ET12 clone, recruited Rab5 and synthesized phosphatidylinositol-3-phosphate, indicating progression to the early phagosomal stage. Despite the fact that the B. cenocepacia-containing vacuoles rarely fused with lysosomes, they could nevertheless acquire the late phagosomal markers CD63 and Rab7. Fluorescence recovery after photobleaching and use of a probe that detects Rab7-guanosine triphosphate indicated that activation of Rab7 was impaired by B. cenocepacia, accounting at least in part for the inability of the vacuole to merge with lysosomes. The Rab7 defect was not due to excessive cholesterol accumulation and was confined to the infected vacuoles. Jointly, these experiments indicate that B. cenocepacia express virulence factors capable of interfering with Rab7 function and thereby with membrane traffic.
Resumo:
Chronic respiratory infections by the Burkholderia cepacia complex (Bcc) are of great concern to patients with cystic fibrosis. Bcc isolates may survive intracellularly within amoebae, respiratory epithelial cells and macrophages. The molecular mechanisms facilitating colonization and pathogenesis remain unclear. Given the importance of bacterial adhesion to host surfaces in microbial pathogenesis, we investigated the role of the O antigen LPS in the interaction of Burkholderia cenocepacia, a member of the Bcc, with macrophages and epithelial cells. Our results demonstrated that the O antigen modulates phagocytosis but does not affect intracellular survival of B. cenocepacia. Internalization of strains that lack O antigen was significantly increased compared to that of their isogenic smooth counterparts. However, no differences between rough and smooth strains were found in their ability to delay phagosomal maturation. We also found that the O antigen interfered with the ability of B. cenocepacia to adhere to bronchial epithelial cells, suggesting that this polysaccharide may mask one or more bacterial surface adhesins.
Resumo:
Burkholderia cenocepacia causes chronic lung infections in patients suffering from cystic fibrosis and chronic granulomatous disease. We have previously shown that B. cenocepacia survives intracellularly in macrophages within a membrane vacuole (BcCV) that delays acidification. Here, we report that after macrophage infection with live B. cenocepacia there is a approximately 6 h delay in the association of NADPH oxidase with BcCVs, while heat-inactivated bacteria are normally trafficked into NADPH oxidase-positive vacuoles. BcCVs in macrophages treated with a functional inhibitor of the cystic fibrosis transmembrane conductance regulator exhibited a further delay in the assembly of the NADPH oxidase complex at the BcCV membrane, but the inhibitor did not affect NADPH oxidase complex assembly onto vacuoles containing heat-inactivated B. cenocepacia or live Escherichia coli. Macrophages produced less superoxide following B. cenocepacia infection as compared to heat-inactivated B. cenocepacia and E. coli controls. Reduced superoxide production was associated with delayed deposition of cerium perhydroxide precipitates around BcCVs of macrophages infected with live B. cenocepacia, as visualized by transmission electron microscopy. Together, our results demonstrate that intracellular B. cenocepacia resides in macrophage vacuoles displaying an altered recruitment of the NADPH oxidase complex at the phagosomal membrane. This phenomenon may contribute to preventing the efficient clearance of this opportunistic pathogen from the infected airways of susceptible patients.
Resumo:
Anthrax lethal toxin (LeTx) induces rapid cell death of RAW246.7 macrophages. We recently found that a small population of these macrophages is spontaneously and temporally refractory to LeTx-induced cytotoxicity. Analysis of genome-wide transcripts of a resistant clone before and after regaining LeTx sensitivity revealed that a reduction of two closely related mitochondrial proteins, Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) and Bnip3-like (Bnip3L), correlates with LeTx resistance. Down-regulation of Bnip3 and Bnip3L was also found in "toxin-induced resistance" whereby sublethal doses of LeTx induce resistance to subsequent exposure to cytolytic toxin doses. The role of Bnip3 and Bnip3L in LeTx-induced cell death was confirmed by showing that overexpression of either Bnip3 or Bnip3L rendered the resistant cells susceptible to LeTx, whereas down-regulation of Bnip3 and Bnip3L in wild-type macrophages conferred resistance. The down-regulation of Bnip3 and Bnip3L mRNAs by LeTx occurred at both transcriptional and mRNA stability levels. Inhibition of the p38 pathway by lethal factor was responsible for the destabilization of Bnip3/Bnip3L mRNAs as confirmed by showing that p38 inhibitors stabilized Bnip3 and Bnip3L mRNAs and conferred resistance to LeTx cytotoxicity. Therefore, Bnip3/Bnip3L play a crucial role in LeTx-induced cytotoxicity, and down-regulation of Bnip3/Bnip3L is a mechanism of spontaneous or toxin-induced resistance of macrophages.
Resumo:
The potential therapeutic value of cell-based therapy with mesenchymal stem cells (MSC) has been reported in mouse models of polymicrobial peritoneal sepsis. However, the mechanisms responsible for the beneficial effects of MSC have not been well defined. Therefore, we tested the therapeutic effect of intravenous bone marrow-derived human MSC in peritoneal sepsis induced by gram-negative bacteria. At 48 h, survival was significantly increased in mice treated with intravenous MSC compared with control mice treated with intravenous fibroblasts (3T3) or intravenous PBS. There were no significant differences in the levels of TNF-a, macrophage inflammatory protein 2, or IL-10 in the plasma. However, there was a marked reduction in the number of bacterial colony-forming units of Pseudomonas aeruginosa in the blood of MSC-treated mice compared with the 3T3 and PBS control groups. In addition, phagocytic activity was increased in blood monocytes isolated from mice treated with MSC compared with the 3T3 and PBS groups. Furthermore, levels of C5a anaphylotoxin were elevated in the blood of mice treated with MSC, a finding that was associated with upregulation of the phagocytosis receptor CD11b on monocytes. The phagocytic activity of neutrophils was not different among the groups. There was also an increase in alternately activated monocytes/macrophages (CD163- and CD206-positive) in the spleen of the MSC-treated mice compared with the two controls. Thus intravenous MSC increased survival from gram-negative peritoneal sepsis, in part by a monocyte-dependent increase in bacterial phagocytosis.