35 resultados para A Song of Ice and Fire
Resumo:
Global climate changes during the Quaternary reveal much about broader evolutionary effects of environmental change. Detailed regional studies reveal how evolutionary lineages and novel communities and ecosystems, emerge through glacial bottlenecks or from refugia. There have been significant advances in benthic imaging and dating, particularly with respect to the movements of the British (Scottish) and Irish ice sheets and associated changes in sea level during and after the Last Glacial Maximum (LGM). Ireland has been isolated as an island for approximately twice as long as Britain with no evidence of any substantial, enduring land bridge between these islands after ca 15 kya. Recent biogeographical studies show that Britain's mammal community is akin to those of southern parts of Scandinavia, The Netherlands and Belgium, but the much lower mammal species richness of Ireland is unique and needs explanation. Here, we consider physiographic, archaeological, phylogeographical i.e. molecular genetic, and biological evidence comprising ecological, behavioural and morphological data, to review how mammal species recolonized western Europe after the LGM with emphasis on Britain and, in particular, Ireland. We focus on why these close neighbours had such different mammal fauna in the early Holocene, the stability of ecosystems after LGM subject to climate change and later species introductions.
There is general concordance of archaeological and molecular genetic evidence where data allow some insight into history after the LGM. Phylogeography reveals the process of recolonization, e.g. with respect to source of colonizers and anthropogenic influence, whilst archaeological data reveal timing more precisely through carbon dating and stratigraphy. More representative samples and improved calibration of the ‘molecular clock’ will lead to further insights with regards to the influence of successive glaciations. Species showing greatest morphological, behavioural and ecological divergence in Ireland in comparison to Britain and continental Europe, were also those which arrived in Ireland very early in the Holocene either with or without the assistance of people. Cold tolerant mammal species recolonized quickly after LGM but disappeared, potentially as a result of a short period of rapid warming. Other early arrivals were less cold tolerant and succumbed to the colder conditions during the Younger Dryas or shortly after the start of the Holocene (11.5 kya), or the area of suitable habitat was insufficient to sustain a viable population especially in larger species. Late Pleistocene mammals in Ireland were restricted to those able to colonize up to ca 15 kya, probably originating from adjacent areas of unglaciated Britain and land now below sea level, to the south and west (of Ireland). These few, early colonizers retain genetic diversity which dates from before the LGM. Late Pleistocene Ireland, therefore, had a much depleted complement of mammal species in comparison to Britain.
Mammal species, colonising predominantly from southeast and east Europe occupied west Europe only as far as Britain between ca 15 and 8 kya, were excluded from Ireland by the Irish and Celtic Seas. Smaller species in particular failed to colonise Ireland. Britain being isolated as an island from ca. 8 kya has similar species richness and composition to adjacent lowland areas of northwest continental Europe and its mammals almost all show strongest genetic affinity to populations in neighbouring continental Europe with a few retaining genotypes associated with earlier, western lineages.
The role of people in the deliberate introduction of mammal species and distinct genotypes is much more significant with regards to Ireland than Britain reflecting the larger species richness of the latter and its more enduring land link with continental Europe. The prime motivation of early people in moving mammals was likely to be resource driven but also potentially cultural; as elsewhere, people exploring uninhabited places introduced species for food and the materials they required to survive. It is possible that the process of introduction of mammals to Ireland commenced during the Mesolithic and accelerated with Neolithic people. Irish populations of these long established, introduced species show some unique genetic variation whilst retaining traces of their origins principally from Britain but in some cases, Scandinavia and Iberia. It is of particular interest that they may retain genetic forms now absent from their source populations. Further species introductions, during the Bronze and late Iron Ages, and Viking and Norman invasions, follow the same pattern but lack the time for genetic divergence from their source populations. Accidental introductions of commensal species show considerable genetic diversity based on numerous translocations along the eastern Atlantic coastline. More recent accidental and deliberate introductions are characterised by a lack of genetic diversity other than that explicable by more than one introduction.
The substantial advances in understanding the postglacial origins and genetic diversity of British and Irish mammals, the role of early people in species translocations, and determination of species that are more recently introduced, should inform policy decisions with regards to species and genetic conservation. Conservation should prioritise early, naturally recolonizing species and those brought in by early people reflecting their long association with these islands. These early arrivals in Britain and Ireland and associated islands show genetic diversity that may be of value in mitigating anthropogenic climate change across Europe. In contrast, more recent introductions are likely to disturb ecosystems greatly, lead to loss of diversity and should be controlled. This challenge is more severe in Ireland where the number and proportion of invasive species from the 19th century to the present has been greater than in Britain.
Resumo:
Just before the onset of the Younger Dryas (YD) cold event, several stomatal proxy-based pCO2 records have shown a sharp increase in atmospheric CO2 concentration (pCO2) of between ca 50 and 100 ppm, followed by a rapid decrease of similar or even larger magnitude. Here we compare one of these records, a high-resolution pCO2 record from southern Sweden, with the IntCal13 record of radiocarbon (Δ14C). The two records show broadly synchronous fluctuations at the YD onset. Specifically, the IntCal13 record documents decreasing Δ14C just before the YD onset when pCO2 peaks, consistent with a source of “old” CO2 from the deep ocean. We propose that this fluctuation occurred due to a major ocean flushing event. The cause of the flushing event remains speculative but could be related to the hypothesis of the glacial ocean as a thermobaric capacitor. We confirm that the earth system can produce such large multi-decadal timescale fluctuations in pCO2 through simulating an artificial ocean flushing event with the GENIE Earth System Model. We suggest that sharp transitions of pCO2 may have remained undetected so far in ice cores due to inter-firn gas exchange and time-averaging. The stomatal proxy record is a powerful complement to the ice core records for the study of rapid climate change.
Resumo:
The icy surfaces of dust grains in the Interstellar Medium and those of comets, satellites and Kuiper Belt Objects are continuously exposed tophoton and charged particle irradiation. These energetic particles maysputter and induce chemical changes in the ices and the underlyingsurfaces.In the present work 258 nm thick O2 and H2O ices were deposited at 10 K with the thickness measured by a laser interferometer method. Asimple model fit to the reflected laser intensity as measured by aphotodiode detector enabled the refractive index of the ices to bedetermined. The ices were then irradiated with various singly and doublycharged ions such as He+, 13C+, N+, O+ , Ar+, 13C2+, N2+ and O2+ at 4keV. The decrease in ice thickness as a function of ion dose wasmonitored by a laser interferometer and the model used to determine thesputtering yield as shown in Figure 1.In the case of O2 ice thesputtering yields increased with increasing ion mass in good agreementwith a model calculation [Fama, J, Shi, R.A Baragiola, Surface Sci.,602, 156 (2007)]. In the case of O2 ice, O2+ has a significant lowersputtering yield when compared to O+. The sputtering yields for O2 icewere found to be at least 9 times larger compared to those for H2O ice.For H2O ice the sputter yields for C, N and O ions were found todecrease with increasing mass. Doubly charged C, N and O ions which werefound to have the same sputtering yield as the singly charged ionswithin the experimental errors. A preliminary TPD study was carried outusing a QMS to detect the desorbed species from water ice afterirradiation by 6 × 10^15 ions of 13C+ and 13C2+. The formation of13CO and 13CO2 was observed with the yield of 13CO almost of a factor of100 larger than of 13CO2. This is in contrast to our earlier work whereonly CO¬2 was observed.
Resumo:
The breast cancer susceptibility gene BRCA1 encodes a protein implicated in the cellular response to DNA damage, with postulated roles in homologous recombination as well as transcriptional regulation. To identify downstream target genes, we established cell lines with tightly regulated inducible expression of BRCA1. High-density oligonucleotide arrays were used to analyze gene expression profiles at various times following BRCA1 induction. A major BRCA1 target is the DNA damage-responsive gene GADD45. Induction of BRCA1 triggers apoptosis through activation of c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), a signaling pathway potentially linked to GADD45 gene family members. The p53-independent induction of GADD45 by BRCA1 and its activation of JNK/SAPK suggest a pathway for BRCA1-induced apoptosis.