135 resultados para 329903 Therapies and Therapeutic Technology
Resumo:
Introduction
Advances in cancer diagnosis and treatment have resulted in longer survival, meaning patients are living with a chronic-type condition. Therefore the needs of such patients have changed placing greater emphasis on survivorship, such as impact on quality of life and sleep patterns. Evidence suggests complementary therapies positively impact not only on the cancer patient's quality of life but also on family members and friends.
Methodology
This service evaluation examines self-reported benefits following a course of complementary therapy offered by a local cancer charity.
Results
Analysis of self-reported sleep scores and perceived quality of life experiences confirmed a number of trends relating to the demographics of people accessing the complementary therapy service.
Conclusion
Results suggest the complementary therapies provided by Action Cancer significantly improved clients' quality of life. Based on these findings the authors make a number of recommendations in relation to the use of complementary therapies by cancer patients.
Resumo:
As the most important viral cause of severe respiratory disease in infants and increasing recognition as important in the elderly and immunocompromised, respiratory syncytial virus (RSV) is responsible for a massive health burden worldwide. Prophylactic antibodies were successfully developed against RSV. However, their use is restricted to a small group of infants considered at high risk of severe RSV disease. There is still no specific therapeutics or vaccines to combat RSV. As such, it remains a major unmet medical need for most individuals. The World Health Organisations International Clinical Trials Registry Platform (WHO ICTRP) and PubMed were used to identify and review all RSV vaccine, prophylactic and therapeutic candidates currently in clinical trials. This review presents an expert commentary on all RSV-specific prophylactic and therapeutic candidates that have entered clinical trials since 2008.
Resumo:
We describe, for the first time the use of hydrogel-forming microneedle (MN) arrays for minimally-invasive extraction and quantification of drug substances and glucose from skin in vitro and in vivo. MN prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) (11.1% w/w) and poly(ethyleneglycol) 10,000 daltons (5.6% w/w) and crosslinked by esterification swelled upon skin insertion by uptake of fluid. Post-removal, theophylline and caffeine were extracted from MN and determined using HPLC, with glucose quantified using a proprietary kit. In vitro studies using excised neonatal porcine skin bathed on the underside by physiologically-relevant analyte concentrations showed rapid (5 min) analyte uptake. For example, mean concentrations of 0.16 μg/mL and 0.85 μg/mL, respectively, were detected for the lowest (5 μg/mL) and highest (35 μg/mL) Franz cell concentrations of theophylline after 5 min insertion. A mean concentration of 0.10 μg/mL was obtained by extraction of MN inserted for 5 min into skin bathed with 5 μg/mL caffeine, while the mean concentration obtained by extraction of MN inserted into skin bathed with 15 μg/mL caffeine was 0.33 μg/mL. The mean detected glucose concentration after 5 min insertion into skin bathed with 4 mmol/L was 19.46 nmol/L. The highest theophylline concentration detected following extraction from a hydrogel-forming MN inserted for 1 h into the skin of a rat dosed orally with 10 mg/kg was of 0.363 μg/mL, whilst a maximum concentration of 0.063 μg/mL was detected following extraction from a MN inserted for 1 h into the skin of a rat dosed with 5 mg/kg theophylline. In human volunteers, the highest mean concentration of caffeine detected using MN was 91.31 μg/mL over the period from 1 to 2 h post-consumption of 100 mg Proplus® tablets. The highest mean blood glucose level was 7.89 nmol/L detected 1 h following ingestion of 75 g of glucose, while the highest mean glucose concentration extracted from MN was 4.29 nmol/L, detected after 3 hours skin insertion in human volunteers. Whilst not directly correlated, concentrations extracted from MN were clearly indicative of trends in blood in both rats and human volunteers. This work strongly illustrates the potential of hydrogel-forming MN in minimally-invasive patient monitoring and diagnosis. Further studies are now ongoing to reduce clinical insertion times and develop mathematical algorithms enabling determination of blood levels directly from MN measurements.
Resumo:
Free-roaming dogs (FRD) represent a potential threat to the quality of life in cities from an ecological, social and public health point of view. One of the most urgent concerns is the role of uncontrolled dogs as reservoirs of infectious diseases transmittable to humans and, above all, rabies. An estimate of the FRD population size and characteristics in a given area is the first step for any relevant intervention programme. Direct count methods are still prominent because of their non-invasive approach, information technologies can support such methods facilitating data collection and allowing for a more efficient data handling. This paper presents a new framework for data collection using a topological algorithm implemented as ArcScript in ESRI® ArcGIS software, which allows for a random selection of the sampling areas. It also supplies a mobile phone application for Android® operating system devices which integrates Global Positioning System (GPS) and Google Maps™. The potential of such a framework was tested in 2 Italian regions. Coupling technological and innovative solutions associated with common counting methods facilitate data collection and transcription. It also paves the way to future applications, which could support dog population management systems.
Resumo:
Background: EpHA2 is a 130 kD transmembrane glycoprotein belonging to ephrin receptor subfamily and involved in angiogenesis/tumour neovascularisation. High EpHA2 mRNA level has recently been implicated in cetuximab resistance. Previously, we found high EpHA2 levels in a panel of invasive colorectal cancer (CRC) cells, which was associated with high levels of stem-cell marker CD44. Our aim was to investigate the prognostic value of EpHA2 and subsequently correlate expression levels to known clinico-pathological variables in early stage CRC. Methods: Tissue samples from 509 CRC patients were analysed. EpHA2 expression was measured using IHC. Kaplan-Meier graphs were used. Univariate and multivariate analyses employed Cox Proportional Hazards Ratio (HR) method. A backward selection method (Akaike’s information criterion) was used to determine a refined multivariate model. Results: EpHA2 was highly expressed in CRC adenocarcinoma compared to matched normal colon tissue. In support of our preclinical invasive models, strong correlation was found between EpHA2 expression and CD44 and Lgr5 staining (p<0.001). In addition, high EpHA2 expression significantly correlated with vascular invasion (p=0.03).HR for OS for stage II/III patients with high EpHA2 expression was 1.69 (95%CI: 1.164-2.439; p=0.003). When stage II/III was broken down into individual stages, there was significant correlation between high EpHA2 expression and poor 5-years OS in stage II patients (HR: 2.18; 95%CI: 1.28-3.71; p=0.005).HR in the stage III group showed a trend to statistical significance (HR: 1.48; 95%CI=0.87-2.51; p=0.05). In both univariate and multivariate analyses of stage II patients, high EpHA2 expression was the only significant factor and was retained in the final multivariate model. Higher levels of EpHA2 were noted in our RAS and BRAF mutant CRC cells, and silencing EpHA2 resulted in significant decreases in migration/invasion in parental and invasive CRC sublines. Correlation between KRAS/NRAS/BRAFmutational status and EpHA2 expression in clinical samples is ongoing. Conclusions: Taken together, our study is the first to indicate that EpHA2 expression is a predictor of poor clinical outcome and a potential novel target in early stage CRC.
Resumo:
Stem and progenitor cells have generated considerable scientific and commercial interest in recent years due to their potential for novel cell therapy for a variety of medical conditions. A highly active research area in the field of regenerative medicine is vascular biology. Blood vessel repair and angiogenesis are key processes with endothelial progenitor cells (EPCs) playing a central role. Clinical trials for ischemic conditions, such as myocardial infarction and peripheral arterial disease, have suggested cell therapies to be feasible, safe, and potentially beneficial. Development of efficient methodologies to deliver EPC-based cytotherapies offers new hope for millions of patients with ischemic conditions. Evidence indicates that EPCs, depending on the subtype, mediate angiogenesis through different mechanisms. Differentiation into endothelium and complete integration into damaged vasculature was the first EPC mechanism to be proposed. However, many studies have demonstrated that vasoregulatory paracrine factor secretion by transplanted cells is also important. Many EPC subsets enhance angiogenesis and promote tissue repair by cytokine release without incorporating into the damaged vasculature. Whatever the mechanism, vascular repair and therapeutic angiogenesis using EPCs represent a realistic treatment option and also provides many commercialization opportunities. This review discusses recent advances in the EPC field whilst recounting relevant patents.
Resumo:
Development of colorectal cancer occurs via a number of key pathways, with the clinicopathological features of specific subgroups being driven by underlying molecular changes. Mutations in key genes within the network of signalling pathways have been identified; however, therapeutic strategies to target these aberrations remain limited. As understanding of the biology of colorectal cancer has improved, this has led to a move toward broader genomic testing, collaborative research and innovative, adaptive clinical trial design. Recent developments in therapy include the routine adoption of wider mutational spectrum testing prior to use of targeted therapies and the first promise of effective immunotherapy for colorectal cancer patients. This review details current biomarkers in colorectal cancer for molecular stratification and for treatment allocation purposes, including open and planned precision medicine trials. Advances in our understanding, therapeutic strategy and technology will also be outlined.
Resumo:
The proteasome is a multicatalytic enzyme complex responsible for the regulated degradation of intracellular proteins. In recent years, inhibition of proteasome function has emerged as a novel anti-cancer therapy. Proteasome inhibition is now established as an effective treatment for relapsed and refractory multiple myeloma and offers great promise for the treatment of other haematological malignancies, when used in combination with conventional therapeutic agents. Bortezomib is the first proteasome inhibitor to be used clinically and a second generation of proteasome inhibitors with differential pharmacological properties are currently in early clinical trials. This review summarises the development of proteasome inhibitors as therapeutic agents and describes how novel assays for measuring proteasome activity and inhibition may help to further delineate the mechanisms of action of different proteasome inhibitors. This will allow for the optimized use of proteasome inhibitors in combination therapies and provide the opportunity to design more potent and therapeutically efficacious proteasome inhibitors.
Resumo:
Delivering sufficient dose to tumours while sparing surrounding tissue is one of the primary challenges of radiotherapy, and in common practice this is typically achieved by using highly penetrating MV photon beams and spatially shaping dose. However, there has been a recent increase in interest in the possibility of using contrast agents with high atomic number to enhance the dose deposited in tumours when used in conjunction with kV x-rays, which see a significant increase in absorption due to the heavy element's high-photoelectric cross-section at such energies. Unfortunately, the introduction of such contrast agents significantly complicates the comparison of different source types for treatment efficacy, as the dose deposited now depends very strongly on the exact composition of the spectrum, making traditional metrics such as beam quality less valuable. To address this, a 'figure of merit' is proposed, which yields a value which enables the direct comparison of different source types for tumours at different depths inside a patient. This figure of merit is evaluated for a 15 MV LINAC source and two 150 kVp sources (both of which make use of a tungsten target, one with conventional aluminium filtration, while the other uses a more aggressive thorium filter) through analytical methods as well as numerical models, considering tissue treated with a realistic concentration and uptake ratio of gold nanoparticle contrast agents (10 mg ml(-1) concentration in 'tumour' volume, 10: 1 uptake ratio). Finally, a test case of human neck phantom is considered with a similar contrast agent to compare the abstract figure to a more realistic treatment situation. Good agreement was found both between the different approaches to calculate the figure of merit, and between the figure of merit and the effectiveness in a more realistic patient scenario. Together, these observations suggest that there is the potential for contrast-enhanced kilovoltage radiation to be a useful therapeutic tool for a number of classes of tumour on dosimetric considerations alone, and they point to the need for further research in this area.