67 resultados para 300505 Anatomy and Physiology
Resumo:
We measured resting metabolic rate (RMR), daily energy expenditure (DEE) and metabolisable energy intake (MEI) in two breeds of dog during peak lactation to test whether litter size differences were a likely consequence of allometric variation in energetics. RMR of Labrador retrievers (30 kg, n = 12) and miniature Schnauzers (6 kg, n = 4) averaged 3437 and 1062 kJ/day, respectively. DEE of Labradors (n = 6) and Schnauzers (n = 4) averaged 9808 and 2619 kJ/day, respectively. MEI of Labradors (n = 12) was 22448 kJ/day and of Schnauzers (a = 7) was 5382 kJ/day. DEE of Labrador pups (2.13 kg, n = 19) was 974 kJ/day and Schnauzers (0.89 kg, n = 7) were 490 kJ/day. Although Labradors had higher MEIs than Schnauzers during peak lactation, there was no difference in mass-specific energy expenditure between the two breeds. Hence, it is unlikely that litter size variation is a likely consequence of differences in maternal energy expenditure. Individual offspring were relatively more costly for mothers of the smaller breed to produce. Therefore, litter size variations were consistent with the expectation that smaller offspring should be more costly for mothers, but not that smaller mothers should per se invest more resources in reproduction. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Infrequent and exceptional behaviours can provide insight into the ecology and physiology of a particular species. Here we examined extraordinarily deep (300-1250 m) and protracted (>1h) dives made by critically endangered leatherback turtles (Dermochelys coriacea) in the context of three previously suggested hypotheses: predator evasion, thermoregulation and exploration for gelatinous prey. Data were obtained via satellite relay data loggers attached to adult turtles at nesting beaches (N=11) and temperate foraging grounds (N=2), constituting a combined tracking period of 9.6 years (N=26,146 dives) and spanning the entire North Atlantic Ocean. Of the dives, 99.6% (N=26,051) were to depths <300 m with only 0.4% (N=95) extending to greater depths (subsequently termed 'deep dives'). Analysis suggested that deep dives: (1) were normally distributed around midday; (2) may exceed the inferred aerobic dive limit for the species; (3) displayed slow vertical descent rates and protracted durations; (4) were much deeper than the thermocline; and (5) occurred predominantly during transit, yet ceased once seasonal residence on foraging grounds began. These findings support the hypothesis that deep dives are periodically employed to survey the water column for diurnally descending gelatinous prey. If a suitable patch is encountered then the turtle may cease transit and remain within that area, waiting for prey to approach the surface at night. If unsuccessful, then migration may continue until a more suitable site is encountered. Additional studies using a meta-analytical approach are nonetheless recommended to further resolve this matter.
Resumo:
Background
G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum.
Results
Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification.
Conclusions
Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.
Resumo:
Variation in the natural abundance stable carbon isotope composition of respired CO2 and biomass has been measured for two types of aerobic bacteria found in contaminated land sites. Pseudomonas putida strain NCIMB 10015 was cultured on phenol and benzoate and Rhodococcus sp. I-1 was cultured on phenol. Results indicate that aerobic isotope fractionations of differing magnitudes occur during aerobic biodegradation of these substrates with an isotopic depletion in the CO2 (Delta(13)C(phenol-CO2)) as much as 3.7 parts per thousand and 5.6 parts per thousand for Pseudomonas putida and Rhodococcus sp. I-1 respectively. This observation has significant implications for the use of a stable isotope mass balance approach in monitoring degradation processes that rely on indigenous bacterial populations. The effects of the metabolic pathway utilised in degradation and inter-species variation on the magnitude of isotope fractionation are discussed. Possible explanations for the observed isotope fractionation include differences in the metabolic pathways utilised by the organisms and differences in specific growth rates and physiology. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
1. Extracts of the liver fluke, Fasciola hepatica from three different hosts (cow, sheep, rat) have been subjected to radioimmunoassay using antisera to 6 mammalian regulatory peptides.
Resumo:
1. Immunoreactivity (IR) towards neuropeptide Y (NPY) and pancreatic polypeptide (PP) has previously been demonstrated in nematodes by immunocytochemistry (ICC).
Resumo:
1. A neuropeptide exhibiting pancreatic polypeptide-immunoreactivity (PP-IR) has been isolated and characterised from the parasitic platyhelminth, Diclidophora merlangi.
Resumo:
1. The ionic response of the liver fluke, Fasciola hepatica to perturbation of Na,K-pump activity has been determined by atomic absorption spectrophotometry.
Resumo:
1. A pancreatic polypeptide (PP)-immunoreactive neuropeptide has been isolated and partially sequenced from the liver fluke, Fasciola hepatica.
Resumo:
1. Tachykinin immunoreactivity has been localized, quantified and chromatographically-characterized in the brain, stomach, intestine and skin of Rana temporaria.
Resumo:
1. Using immunocytochemical techniques and confocal scanning laser microscopy, the proteocephalidean cestode, Proteocephalus pollanicola from Lough Neagh pollan (Coregonus autumnalis) was examined for the presence of the native platyhelminth neuropeptide, neuropeptide F (NPF).