38 resultados para 3-chloro-2
Resumo:
A synthesis of highly substituted and sterically congested bicyclo[4.3.1]decenes, a structure embedded in the core 4,7,6-tricyclic system of natural caryolanes, was successfully achieved via a ring-closing metathesis (RCM) reaction of syn-1,3-diene substituted cyclohexanols. The construction of the diene substrates, starting from 4-acetoxy-3-methyl-2-cyclohexen-1-one, employed diastereoselective copper-mediated conjugate addition and Grignard reactions. An X-ray crystal structure determination of a key synthetic intermediate confirmed the relative stereochemistry of the RCM bicyclic product.
Resumo:
The 5'-O-monomethoxytrityl-3'-S-(aryldisulfanyl)-3'-deoxythymidines 7 and 8 have been prepared by the reaction of 5'-O-monomethoxytrityl-3'-thiothymidine with the appropriate arenesulfenyl chloride. These disulfides undergo a Michaelis–Arbusov reaction with simple trialkyl phosphites to yield 5'-O-monomethoxytrityl-3'-thiothymidin-3'-yl O,O-dialkyl phosphorothiolates. More interestingly, 3'-deoxy-3'-S-(2, 4-dinitrophenylsulfanyl)-5'-O-monomethoxytritylthymidine 8 reacts with a variety of thymidin-5'-yl dialkyl phosphites to give dithymidine phosphorothiolate triesters with the phosphorothiolate group protected with either a methyl or a 2-cyanoethyl group. 3'-O-(tert-Butyldimethylsilyl)thymidin-5'-yl triethylammoniumphosphonate 17 is converted into the corresponding bis-(O-trimethylsilyl) phosphite by treatment with bis(trimethylsilyl)trifluoroacetamide. in situ Reaction of this phosphate with disulfide 8 gives, after work-up, the dithymidine phosphorothiolate diester directly. Methylation of compound 17 with methyl chloromethanoate, followed by silylation and subsequent reaction with disulfide 8, gives the methyl-protected dithymidine phosphorothiolate triester.
Resumo:
Oligonucleotides containing a 3'-thiothymidine residue (T3's) at the cleavage site for the EcoRV restriction endonuclease (between the central T and A residues of the sequence GATATC) have been prepared on an automated DNA synthesizer using 5'-O-monomethoxytritylthymidine 3'-S-(2-cyanoethyl N,N-di-isopropylphosphorothioamidite). The self-complementary sequence GACGAT3'sATCGTC was completely resistant to cleavage by EcoRV, while the heteroduplex composed of 5'-TCTGAT3'sATCCTC and 5'-GAGGATATCAGA (duplex 4) was cleaved only in the unmodified strand (5'-GAGGATATCAGA). In contrast, strands containing a 3'-S-phosphorothiolate linkage could be chemically cleaved specifically at this site with Ag+. A T3's residue has also been incorporated in the (-) strand of double-stranded closed circular (RF IV) M13mp18 DNA at the cleavage site of a unique EcoRV recognition sequence by using 5'-pCGAGCTCGAT3'sATCGTAAT as a primer for polymerization on the template (+) strand of M13mp18 DNA. On treatment of this substrate with EcoRV, only one strand was cleaved to produce the RF II or nicked DNA. Taken in conjunction with the cleavage studies on the oligonucleotides, this result demonstrates that the 3'-S-phosphorothiolate linkage is resistant to scission by EcoRV. Additionally, the phosphorothiolate-containing strand of the M13mp18 DNA could be cleaved specifically at the point of modification using iodine in aqueous pyridine. The combination of enzymatic and chemical techniques provides, for the first time, a demonstrated method for the sequence-specific cleavage of either the (+) or (-) strand.
Resumo:
INTRODUCTION:
The young-onset diabetes seen in HNF1A-MODY is often misdiagnosed as Type 2 diabetes. Type 2 diabetes, unlike HNF1A-MODY, is associated with insulin resistance and a characteristic dyslipidaemia. We aimed to compare the lipid profiles in HNF1A-MODY, Type 2 diabetes and control subjects and to determine if lipids can be used to aid the differential diagnosis of diabetes sub-type.
METHODS:
1) 14 subjects in each group (HNF1A-MODY, Type 2 diabetes and controls) were matched for gender and BMI. Fasting lipid profiles and HDL lipid constituents were compared in the 3 groups. 2) HDL-cholesterol was assessed in a further 267 patients with HNF1A-MODY and 297 patients with a diagnosis of Type 2 diabetes to determine its discriminative value.
RESULTS:
1) In HNF1A-MODY subjects, plasma-triglycerides were lower (1.36 vs. 1.93 mmol/l, p = 0.07) and plasma-HDL-cholesterol was higher than in subjects with Type 2 diabetes (1.47 vs. 1.15 mmol/l, p = 0.0008), but was similar to controls. Furthermore, in the isolated HDL; HDL-phospholipid and HDL-cholesterol ester content were higher in HNF1A-MODY, than in Type 2 diabetes (1.59 vs. 1.33 mmol/L, p = 0.04 and 1.10 vs. 0.83 mmol/L, p = 0.019, respectively), but were similar to controls (1.59 vs. 1.45 mmol/L, p = 0.35 and 1.10 vs. 1.21 mmol/L, p = 0.19, respectively). 2) A plasma-HDL-cholesterol > 1.12 mmol/L was 75% sensitive and 64% specific (ROC AUC = 0.76) at discriminating HNF1A-MODY from Type 2 diabetes.
CONCLUSION:
The plasma-lipid profiles of HNF1A-MODY and the lipid constituents of HDL are similar to non-diabetic controls. However, HDL-cholesterol was higher in HNF1A-MODY than in Type 2 diabetes and could be used as a biomarker to aid in the identification of patients with HNF1A-MODY.
Resumo:
In this work, we demonstrate that the wbbD gene of the O7 lipopolysaccharide (LPS) biosynthesis cluster in Escherichia coli strain VW187 (O7:K1) encodes a galactosyltransferase involved in the synthesis of the O7-polysaccharide repeating unit. The galactosyltransferase catalyzed the transfer of Gal from UDP-Gal to the GlcNAc residue of a GlcNAc-pyrophosphate-lipid acceptor. A mutant strain with a defective wbbD gene was unable to form O7 LPS and lacked this specific galactosyltransferase activity. The normal phenotype was restored by complementing the mutant with the cloned wbbD gene. To characterize the WbbD galactosyltransferase, we used a novel acceptor substrate containing GlcNAcalpha-pyrophosphate covalently bound to a hydrophobic phenoxyundecyl moiety (GlcNAc alpha-O-PO(3)-PO(3)-(CH(2))(11)-O-phenyl). The WbbD galactosyltransferase had optimal activity at pH 7 in the presence of 2.5 mM MnCl(2). Detergents in the assay did not increase glycosyl transfer. Digestion of enzyme product by highly purified bovine testicular beta-galactosidase demonstrated a beta-linkage. Cleavage of product by pyrophosphatase and phosphatase, followed by HPLC and NMR analyses, revealed a disaccharide with the structure Gal beta1-3GlcNAc. Our results conclusively demonstrate that WbbD is a UDP-Gal: GlcNAcalpha-pyrophosphate-R beta1,3-galactosyltransferase and suggest that the novel synthetic glycolipid acceptor may be generally applicable to characterize other bacterial glycosyltransferases.
Resumo:
The spatial location of microorganisms in the soil three-dimensional structure with respect to their substrates plays an important role in the persistence and turnover of natural and xenobiotic organic compounds. To study the effect of spatial location on the mineralisation of 14C-2,4-dichlorophenol (2,4-DCP, 0.15 or 0.31 μmol g-1) and 14C-glucose (2.77 μmol g-1), columns packed with autoclaved soil aggregates (2-5 mm) were used. Using a chloride tracer of water movement, the existence of 'immobile' water, which was by-passed by preferentially flowing 'mobile' water, was demonstrated. By manipulation of the soil moisture content, the substrates were putatively placed to these conceptual hydrological domains (immobile and mobile water). Leaching studies revealed that approximately 1.7 (glucose) and 3.4 (2.4-DCP) times the amount of substrate placed in mobile water was recovered in the first 4 fractions of leachate when compared to substrate placed in immobile water. The marked difference in the breakthrough curves was taken as evidence of successful substrate placement. The 2,4-DCP degrading bacterium, Burkholderia sp. RASCc2, was inoculated in mobile water (1.8-5.2 × 107 cells g-1 soil) and parameters (asymptote, time at maximum rate, calculated maximum rate) describing the mineralisation kinetics of 2,4-DCP and glucose previously added to immobile or mobile water domains were compared, For glucose, there was no significant effect (P > 0.1) of substrate placement on any of the mineralisation parameters. However, substrate placement had a significant effect (P < 0.05) on parameters describing 2,4-DCP mineralisation. In particular, 2,4-DCP added in mobile water was mineralised with a greater maximum rate and with a reduced time at maximum rate when compared to 2,4-DCP added to immobile water. The difference in response between the two test substrates may reflect the importance of sorption in controlling the spatial bioavailability of compounds in soil. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of increasing concentrations (65, 130, 325, 1,300, and 3,250 μg/g soil dry weight) of 1,2-dichlorobenzene (1,2-DCB) on the microbial biomass, metabolic potential, and diversity of culturable bacteria was investigated using soil microcosms. All doses caused a significant (p < 0.05) decrease in viable hyphal fungal length. Bacteria were more tolerant, only direct total counts in soils exposed to 3,250 μg/g were significantly (p < 0.05) lower than untreated controls, and estimates of culturable bacteria showed no response. Pseudomonads counts were stimulated by 1,2-DCB concentrations of up to 325 μg/g; above this level counts were similar to controls. Fatty acid methyl ester analysis of taxonomic bacterial composition reflected the differential response of specific genera to increasing 1,2-DCB concentrations, especially the tolerance of Bacillus to the highest concentrations. The shifts in community composition were reflected in estimates of metabolic potential assessed by carbon assimilation (Biolog) ability. Significantly fewer (p < 0.05) carbon sources were utilized by communities exposed to 1,2-DCB concentrations greater than 130 μg/g (<64 carbon sources utilized) than control soils (83); the ability to assimilate individual carbohydrates sources was especially compromised. The results of this study demonstrate that community diversity and metabolic potential can be used as effective bioindicators of pollution stress and concentration effects.
Response of soil microbial biomass to 1,2-dichlorobenzene addition in the presence of plant residues
Resumo:
The impact of 1,2-dichlorobenzene on soil microbial biomass in the presence and absence of fresh plant residues (roots) was investigated by assaying total vital bacterial counts, vital fungel hyphal length, total culturable bacterial counts, and culturable fluorescent pseudomonads. Diversity of the fluorescent pseudomonads was investigated using fatty acid methyl ester (FAME) characterization in conjunction with metabolic profiling of the sampled culturable community (Biolog). Mineralization of [14C]1,2- dichlorobenzene was also assayed. Addition of fresh roots stimulated 1,2- dichlorobenzene mineralization by over 100%, with nearly 20% of the label mineralized in root-amended treatments by the termination of the experiment. Presence of roots also buffered any impacts of 1,2-dichlorobenzene on microbial numbers. In the absence of roots, 1,2-dichlorobenzene greatly stimulated total culturable bacteria and culturable pseudomonads in a concentration-dependent manner. 1,2-Dichlorobenzene, up to concentrations of 50 μg/g soil dry weight had little or no deleterious effects on microbial counts. The phenotypic diversity of the fluorescent pseudomonad population was unaffected by the treatments, even though fluorescent pseudomonad numbers were greatly stimulated by both roots and 1,2-dichlorobenzene. The presence of roots had no detectable impact on the bacterial community composition. No phenotypic shifts in the natural population were required to benefit from the presence of roots and 1,2-dichlorobenzene. The metabolic capacity of the culturable bacterial community was altered in the presence of roots but not in the presence of 1,2-dichlorobenzene. It is argued that the increased microbial biomass and shifts in metabolic capacity of the microbial biomass are responsible for enhanced degradation of 1,2-dichlorobenzene in the presence of decaying plant roots.