37 resultados para 21-206B
Resumo:
Cyathostomins comprise a group of 50 species of parasitic nematodes that infect equids. Ribosomal DNA sequences, in particular the intergenic spacer (IGS) region, have been utilized via several methodologies to identify pre-parasitic stages of the commonest species that affect horses. These methods rely on the availability of accurate sequence information for each species, as well as detailed knowledge of the levels of intra- and inter-specific variation. Here, the IGS DNA region was amplified and sequenced from 10 cyathostomin species for which sequence was not previously available. Also, additional IGS DNA sequences were generated from individual worms of 8 species already studied. Comparative analysis of these sequences revealed a greater range of intra-specific variation than previously reported (up to 23%); whilst the level of inter-specific variation (3-62%) was similar to that identified in earlier studies. The reverse line blot (RLB) method has been used to exploit the cyathostomin IGS DNA region for species identification. Here, we report validation of novel and existing DNA probes for identification of cyathostomins using this method and highlight their application in differentiating life-cycle stages such as third-stage larvae that cannot be identified to species by morphological means.
Resumo:
We report calculations of energy levels, radiative rates, and electron impact excitation rates for transitions in Li-like ions with 21≤Z≤28. The General-Purpose Relativistic Atomic Structure Package is adopted for calculating energy levels and radiative rates, while for determining the collision strengths and subsequently the excitation rates, the Dirac Atomic R-matrix Code is used. Oscillator strengths, radiative rates, and line strengths are listed for all E1, E2, M1, and M2 transitions among the lowest 24 levels of the Li-like ions considered. Collision strengths have been averaged over a Maxwellian velocity distribution, and the effective collision strengths obtained are given over a wide temperature range up to 107.8 K. Additionally, lifetimes are listed for all calculated levels of these ions. Finally, extensive comparisons are made with results available in the literature, as well as with our analogous calculations for all parameters with the Flexible Atomic Code, in order to assess the accuracy of the results.
Resumo:
The Bcr-Abl kinase inhibitor, STI571, is the first line treatment for chronic myeloid leukaemia (CML), but the recent emergence of STI571 resistance has led to the examination of combination therapies. In this report, we describe how a novel non-toxic G1-arresting compound, pyrrolo-1,5-benzoxazepine (PBOX)-21, potentiates the apoptotic ability of STI571 in Bcr-Abl-positive CML cells. Co-treatment of CML cells with PBOX-21 and STI571 induced more apoptosis than either drug alone in parental (K562S and LAMA84) and STI571-resistant cells lines (K562R). This potentiation of apoptosis was specific to Bcr-Abl-positive leukaemia cells with no effect observed on Bcr-Abl-negative HL-60 acute myeloid leukaemia cells. Apoptosis induced by PBOX-21/STI571 resulted in activation of caspase-8, cleavage of PARP and Bcl-2, upregulation of the pro-apoptotic protein Bim and a downregulation of Bcr-Abl. Repression of proteins involved in Bcr-Abl transformation, the anti-apoptotic proteins Mcl-1 and Bcl-(XL) was also observed. The combined lack of an early change in mitochondrial membrane potential, release of cytochrome c and cleavage of pro-caspase-9 suggests that this pathway is not involved in the initiation of apoptosis by PBOX-21/STI571. Apoptosis was significantly reduced following pre-treatment with either the general caspase inhibitor Boc-FMK or the chymotrypsin-like serine protease inhibitor TPCK, but was completely abrogated following pre-treatment with a combination of these inhibitors. This demonstrates the important role for each of these protease families in this apoptotic pathway. In conclusion, our data highlights the potential of PBOX-21 in combination with STI571 as an effective therapy against CML.
Resumo:
Generating timetables for an institution is a challenging and time consuming task due to different demands on the overall structure of the timetable. In this paper, a new hybrid method which is a combination of a great deluge and artificial bee colony algorithm (INMGD-ABC) is proposed to address the university timetabling problem. Artificial bee colony algorithm (ABC) is a population based method that has been introduced in recent years and has proven successful in solving various optimization problems effectively. However, as with many search based approaches, there exist weaknesses in the exploration and exploitation abilities which tend to induce slow convergence of the overall search process. Therefore, hybridization is proposed to compensate for the identified weaknesses of the ABC. Also, inspired from imperialist competitive algorithms, an assimilation policy is implemented in order to improve the global exploration ability of the ABC algorithm. In addition, Nelder–Mead simplex search method is incorporated within the great deluge algorithm (NMGD) with the aim of enhancing the exploitation ability of the hybrid method in fine-tuning the problem search region. The proposed method is tested on two differing benchmark datasets i.e. examination and course timetabling datasets. A statistical analysis t-test has been conducted and shows the performance of the proposed approach as significantly better than basic ABC algorithm. Finally, the experimental results are compared against state-of-the art methods in the literature, with results obtained that are competitive and in certain cases achieving some of the current best results to those in the literature.