51 resultados para 1995_03191256 TM-19 4500715
Resumo:
Certain policy areas with considerable impact on young people's educational experiences and achievements, notably assessment and qualifications, do not involve consultation with young people to any meaningful extent. Findings from a national study, which included focus groups with 243 students in the 14-19 phase, are presented with respect to student consultation and participation in such policy areas. A lack of meaningful consultation regarding what students see as ‘higher level’ policy agendas was found (such as qualifications provision, choice or structure). Students are therefore ‘voiceless’ in relation to major qualifications reforms
Resumo:
The pathways of biotransformation of 4-fluorobiphenyl (4FBP) by the ectomycorrhizal fungus Tylospora fibrilosa and several other mycorrhizal fungi were investigated by using (19)F nuclear magnetic resonance (NMR) spectroscopy in combination with (14)C radioisotope-detected high-performance liquid chromatography ((14)C-HPLC). Under the conditions used in this study T. fibrillosa and some other species degraded 4FBP. (14)C-HPLC profiles indicated that there were four major biotransformation products, whereas (19)F NMR showed that there were six major fluorine-containing products. We confirmed that 4-fluorobiphen-4'-ol and 4-fluorobiphen-3'-ol were two of the major products formed, but no other products were conclusively identified. There was no evidence for the expected biotransformation pathway (namely, meta cleavage of the less halogenated ring), as none of the expected products of this route were found. To the best of our knowledge, this is the first report describing intermediates formed during mycorrhizal degradation of halogenated biphenyls.
Resumo:
The growth of magnetic fields in the density gradient of a rarefaction wave has been observed in simulations and in laboratory experiments. The thermal anisotropy of the electrons, which gives rise to the magnetic instability, is maintained by the ambipolar electric field. This simple mechanism could be important for the magnetic field amplification in astrophysical jets or in the interstellar medium ahead of supernova remnant shocks. The acceleration of protons and the generation of a magnetic field by the rarefaction wave, which is fed by an expanding circular plasma cloud, is examined here in form of a 2D particle-in-cell simulation. The core of the plasma cloud is modeled by immobile charges, and the mobile protons form a small ring close to the cloud's surface. The number density of mobile protons is thus less than that of the electrons. The protons of the rarefaction wave are accelerated to 1/10 of the electron thermal speed, and the acceleration results in a thermal anisotropy of the electron distribution in the entire plasma cloud. The instability in the rarefaction wave is outrun by a TM wave, which grows in the dense core distribution, and its magnetic field expands into the rarefaction wave. This expansion drives a secondary TE wave. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769128]
Resumo:
An endocrine disruptor (ED) is an exogenous compound that interferes with the body's endocrine system. Exposure to EDs may result in adverse health effects such as infertility and cancer. EDs are composed of a vast group of chemicals including compounds of natural origin such as phytoestrogens or mycotoxins and a wide range of man-made chemicals such as pesticides. Synthetic compounds may find their way into the food chain where a number of them can biomagnify. Additionally, processing activities and food contact materials may add further to the already existing pool of food contaminants. Thus, our diet is considered to be one of the main exposure routes to EDs. Some precautionary legislation has already been introduced to control production and/or application of some persistent organic pollutants with ED characteristics. However, newly emerging EDs with bioaccumulative properties have recently been reported to appear at lower tiers of the food chain but have not been monitored at the grander scale. Milk and dairy products are a major component of our diet, thus it is important to monitor them for EDs. However, most methods developed to date are devoted to one group of compounds at a time. The UHPLC-MS/MS method described here has been validated according to EC decision 2002/657/EC and allows simultaneous extraction, detection, quantitation and confirmation of 19 EDs in milk. The method calibration range is between 0.50 and 20.0 μg kg with coefficients of determination above 0.99 for all analytes. Precision varied from 4.7% to 23.4% in repeatability and reproducibility studies. Established CCα and CCβ values (0.11-0.67 μg kg) facilitate fast, reliable, quantitative and confirmatory analysis of sub μg kg levels of a range of EDs in milk.
Resumo:
This paper describes the application of gene delivery vectors based on connecting together two well-defined low-generation poly(L-lysine) (PLL) dendrons using a disulfide-containing linker unit. We report that the transfection ability of these vectors in their own right is relatively low, because the low-generation number limits the endosomal buffering capacity. Importantly, however, we demonstrate that when applied in combination with Lipofectamine 2000 (TM), a vector from the cationic lipid family, these small cationic additives significantly enhance the levels of gene delivery (up to four-fold). Notably, the cationic additives have no effect on the levels of transfection observed with a cationic polymer, such as DEAE dextran. We therefore argue that the synergistic effects observed with Lipofectamine 2000 (TM) arise as a result of combining the delivery advantages of two different classes of vector within a single formulation, with our dendritic additives providing a degree of pH buffering within the endosome. As such, the data we present indicate that small dendritic structures, although previously largely overlooked for gene delivery owing to their inability to transfect in their own right, may actually be useful well-defined additives to well-established vector systems in order to enhance the gene delivery payload.