76 resultados para 1469
Resumo:
Aim
The aim of this study was to use a prospective longitudinal study to describe age-related trends in energy efficiency during gait, activity, and participation in ambulatory children with cerebral palsy (CP).
Method
Gross Motor Function Measure (GMFM), Paediatric Evaluation of Disability Inventory (PEDI), and Lifestyle Assessment Questionnaire-Cerebral Palsy (LAQ-CP) scores, and energy efficiency (oxygen cost) during gait were assessed in representative sample of 184 children (112 male; 72 female; mean age 10y 9mo; range 4–16y) with CP. Ninety-four children had unilateral spastic CP, 84 bilateral spastic CP, and six had other forms of CP. Fifty-seven were classified as Gross Motor Function Classification System (GMFCS) level I, 91 as level II, 22 as level III, and 14 as level IV). Assessments were carried out on two occasions (visit 1 and visit 2) separated by an interval of 2 years and 7 months. A total of 157 participants returned for reassessment.
Results
Significant improvements in mean raw scores for GMFM, PEDI, and LAQ-CP were recorded; however, mean raw oxygen cost deteriorated over time. Age-related trends revealed gait to be most inefficient at the age of 12 years, but GMFM scores continued to improve until the age of 13 years, and two PEDI subscales to age 14 years, before deteriorating (p<0.05). Baseline score was consistently the single greatest predictor of visit 2 score. Substantial agreement in GMFCS ratings over time was achieved (?lw=0.74–0.76).
Interpretation
These findings have implications in terms of optimal provision and delivery of services for young people with CP to maximize physical capabilities and maintain functional skills into adulthood.
Resumo:
ABSTRACT Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful analytical techniques available to biology. This review is an introduction to the potential of this method and is aimed at readers who have little or no experience in acquiring or analyzing NMR spectra. We focus on spectroscopic applications of the magnetic resonance effect, rather than imaging ones, and explain how various aspects of the NMR phenomenon make it a versatile tool with which to address a number of biological problems. Using detailed examples, we discuss the use of 1H NMR spectroscopy in mixture analysis and metabolomics, the use of 13C NMR spectroscopy in tracking isotopomers and determining the flux through metabolic pathways (‘fluxomics’) and the use of 31P NMR spectroscopy in monitoring ATP generation and intracellular pH homeotasis in vivo. Further examples demonstrate how NMR spectroscopy can be used to probe the physical environment of a cell by measuring diffusion and the tumbling rates of individual metabolites and how it can determine macromolecular structures by measuring the bonds and distances which separate individual atoms. We finish by outlining some of the key challenges which remain in NMR spectroscopy and we highlight how recent advances— such as increased magnet field strengths, cryogenic cooling, microprobes and hyperpolarisation—are opening new avenues for today’s biological NMR spectroscopists.
Resumo:
The filamentous brown alga Ectocarpus has a complex life cycle, involving alternation between independent and morphologically distinct sporophyte and gametophyte generations. In addition to this basic haploid–diploid life cycle, gametes can germinate parthenogenetically to produce parthenosporophytes. This article addresses the question of how parthenosporophytes, which are derived from a haploid progenitor cell, are able to produce meiospores in unilocular sporangia, a process that normally involves a reductive meiotic division.
We used flow cytometry, multiphoton imaging, culture studies and a bioinformatics survey of the recently sequenced Ectocarpus genome to describe its life cycle under laboratory conditions and the nuclear DNA changes which accompany key developmental transitions.
Endoreduplication occurs during the first cell cycle in about one-third of parthenosporophytes. The production of meiospores by these diploid parthenosporophytes involves a meiotic division similar to that observed in zygote-derived sporophytes. By contrast, meiospore production in parthenosporophytes that fail to endoreduplicate occurs via a nonreductive apomeiotic event.
Our results highlight Ectocarpus’s reproductive and developmental plasticity and are consistent with previous work showing that its life cycle transitions are controlled by genetic mechanisms and are independent of ploidy.
Resumo:
Aim
The aim of this study was to describe stress in the parents of children with cerebral palsy and investigate associations with very high stress.
Method
A cross-sectional survey was conducted of parents of 818 children aged 8 to 12 years from nine regions in Europe. Families were eligible to participate if they were living in one of the specified geographic areas. Parental stress was captured using the Parenting Stress Index Short Form, which has 36 items and takes 10 minutes to complete. Parents rate items on a 5-point Likert scale, with higher scores indicating higher stress. The Short Form yields scores on three subscales and a Total Stress score. A trained research associate administered the questionnaire in the child’s home and visits lasted 90 to 120 minutes. All data collected were reported by parents unless otherwise stated.
Results
The Total Stress score on the Parenting Stress Index was dichotomized into scores of less than 99 or 99 or more, the latter indicating ‘very high’ stress. Most respondents were mothers (94%), and 26% reported very high stress levels. The parents of children with communication impairment had higher odds for very high stress (odds ratio [OR] 1.9; 95% confidence interval [CI] 1.2–3.0) than those whose child had no such impairment; the parents of children with moderate or severe pain had higher odds for very high stress (OR 1.7 [95% CI 1.1–2.4] and 2.5 [95% CI 1.5–4.3] respectively) than those whose child had no pain; and the parents of children with an intellectual impairment had higher odds for very high stress (OR 1.8; 95% CI 1.2–2.9) than those whose child had none. There was no association between very high stress and motor impairment. The subscales ‘parent–child dysfunctional interaction’ and ‘difficult child’ contributed most to the Total Stress score.
Interpretation
Parents of children with communication difficulties, intellectual impairment, or pain are at very high risk of stress. The final model explained 12% of the observed variation in very high stress.
Oromotor dysfunction and communication impairments in children with cerebral palsy: a Register study
Resumo:
Aim To report the prevalence, clinical associations, and trends over time of oromotor dysfunction and communication impairments in children with cerebral palsy (CP).
Method Multiple sources of ascertainment were used and children followed up with a standardized assessment including motor speech problems, swallowing/chewing difficulties, excessive drooling, and communication impairments at age 5 years.
Results A total of 1357 children born between 1980 and 2001 were studied (781 males, 576 females; median age 5y 11mo, interquartile range 3–9y; unilateral spastic CP, n=447; bilateral spastic CP, n=496; other, n=112; Gross Motor Function Classification System [GMFCS] level: I, 181; II, 563; III, 123; IV, 82; IV, 276). Of those with ‘early-onset’ CP (n=1268), 36% had motor speech problems, 21% had swallowing/chewing difficulties, 22% had excessive drooling, and 42% had communication impairments (excluding articulation defects). All impairments were significantly related to poorer gross motor function and intellectual impairment. In addition, motor speech problems were related to clinical subtype; swallowing/chewing problems and communication impairments to early mortality; and communication impairments to the presence of seizures. Of those with CP in GMFCS levels IV to V, a significant proportion showed a decline in the rate of motor speech impairment (p=0.008) and excessive drooling (p=0.009) over time.
Interpretation These impairments are common in children with CP and are associated with poorer gross motor function and intellectual impairment.
Resumo:
Although cerebral palsy (CP) is the most common cause of motor deficiency in young children, it occurs in only 2 to 3 per 1000 live births. In order to monitor prevalence rates, especially within subgroups (birthweight, clinical type), it is necessary to study large populations. A network of CP surveys and registers was formed in 14 centres in eight countries across Europe. Differences in prevalence rates of CP in the centres prior to any work on harmonization of data are reported. The subsequent process to standardize the definition of CP, inclusion/exclusion criteria, classification, and description of children with CP is outlined. The consensus that was reached on these issues will make it possible to monitor trends in CP rate, to provide a framework for collaborative research, and a basis for services planning among European countries.
Resumo:
Carcinus manenas, Liocarcinus puber and Cancer pagurs are thought to be three likely crab predators of the gastropod Calliostoma Zizyphinum. In order to compare the strenghts of predators and their prey, the whole shell and aperture lip strengh of white and pink Calliostoma morphotypes and the maximum forces exerted by the chelipeds of three crab species were measured. Although white shells were thicker than pink shells, Calliostoma colour morphotyes did not differ significantly in either the force required to break the shell lip or the whole shell. Both Liocarcinus puber and Carcinus maenas have dimorphic chelipeds and their “crusher” chelipeds deliver almost double the forces generated by the‘cutter’chelipeds. In constrast, Cancer pagurus has monomorphic chelipeds both delivering similar forces. When compared with Calliostoma shell strenght, the forces generated by the‘crusher’chelipeds of most L. puber tested were, in general, sufficient to break the shell lip of Calliostoma shells, whereas forces generated by the‘cutter’chelipeds of only the larger individuals were sufficient to break the shell lip. In C. manenas, forces generated by both the‘cutter’and‘crusher’chelipeds often exceeded the minimum recorded force required to break the shell lip and the‘crusher’cheliped reached the minimum force required to break whole Calliostoma shells. Both chelipeds of all C. pagurus tested generated forces in excess of the minimum required to break the shell lip, and the proportion of individuals capable of generating the minimum force required to break the whole shell increased with the size of the size of the crab. Carcinus maenas and Cancer pagurus were capable of breaking both the shell lips and the whole shells of a wider range of shell sizes than L. puber.
Resumo:
AIM:
We examined the effect of partial hearing, including cochlear implantation, on the development of motor skills in children (aged 6-12y).
METHOD:
Three independent groups of children were selected: a partial hearing group (n=25 [14 males, 11 females]; mean age 8y 8mo, SD 1y 10mo), a nonverbal IQ-matched group (n=27 [15 males, 12 females]; mean age 9y, SD 1y 6mo), and an age-matched group (n=26 [8 males, 18 females]; mean age 8y 8mo, SD 1y 7mo) from three schools with special units for children with partial hearing. All children with partial hearing had a bilateral hearing loss >60 decibels. Motor and balance skills were assessed using the Movement Assessment Battery for Children (MABC) and two protocols from the NeuroCom Balance Master clinical procedures.
RESULTS:
The mean standardized total MABC score of the children with partial hearing (95% confidence interval [CI] 71.8-88.7) was significantly lower than both the age-matched (95% CI 95.8-111.4; p<0.01) and the IQ-matched (95% CI 87.6-103.0; p=0.03) comparison groups. The children with partial hearing had particular difficulties with balance, most notably during tests of intersensory demand. However, subgroup analyses revealed that the effect of cochlear implantation was clearly dependent on the nature of the task.
INTERPRETATION:
Children with partial hearing are at high risk of clinical levels of motor deficit, with balance difficulties providing support for conventional vestibular deficit theory. However, the effect of cochlear implantation suggests that other sensory systems may be involved. A broader ecological perspective, which takes into account factors external to the child, may prove a useful framework for future research.
Resumo:
Spatial analysis was used to explore the distribution of individual species in an ectomycorrhizal (ECM) fungal community to address: whether mycorrhizas of individual ECM fungal species were patchily distributed, and at what scale; and what the causes of this patchiness might be. Ectomycorrhizas were extracted from spatially explicit samples of the surface organic horizons of a pine plantation. The number of mycorrhizas of each ECM fungal species was recorded using morphotyping combined with internal transcribed spacer (ITS) sequencing. Semivariograms, kriging and cluster analyses were used to determine both the extent and scale of spatial autocorrelation in species abundances, potential interactions between species, and change over time. The mycorrhizas of some, but not all, ECM fungal species were patchily distributed and the size of patches differed between species. The relative abundance of individual ECM fungal species and the position of patches of ectomycorrhizas changed between years. Spatial and temporal analysis revealed a dynamic ECM fungal community with many interspecific interactions taking place, despite the homogeneity of the host community. The spatial pattern of mycorrhizas was influenced by the underlying distribution of fine roots, but local root density was in turn influenced by the presence of specific fungal species.
Resumo:
In normal populations of the common grass Holcus lanatus there is a polymorphism for arsenate resistance, manifested as suppressed phosphate uptake (SPU), and controlled by a major gene with dominant expression. A natural population of SPU plants had greater arbuscular-mycorrhizal colonization than wild type, nonSPU plants. It was hypothesized that, in order to survive alongside plants with a normal rate of phosphate (P) uptake, SPU plants would be more dependent on mycorrhizal associations. We performed an experiment using plants with SPU phenotypes from both arsenate mine spoils and uncontaminated soils, as well as plants with a nonSPU phenotype. They were grown with and without a mycorrhizal inoculum and added N, which altered plant P requirements. We showed that grasses with SPU phenotypes accumulated more shoot P than nonSPU plants, the opposite of the expected result. SPY plants also produced considerably more flower panicles, and had greater shoot and root biomass. The persistence of SPU phenotypes in normal populations is not necessarily related to mycorrhizal colonization as there were no differences in percentage AM colonization between the phenotypes. Being mycorrhizal reduced flower biomass production, as mycorrhizal SPU plants had lower shoot P concentrations and produced fewer flower panicles than non-mycorrhizal, nonSPU plants. We now hypothesize that the SPU phenotype is brought about by a genotype that results in increased accumulation of P in shoots, and that suppression of the rate of uptake is a consequence of this high shoot P concentration, operating by means of a homeostatic feedback mechanism. We also postulate that increased flower production is linked to a high shoot P concentration. SPU plants thus allocate more resources into seed production, leading to a higher frequency of SPU genes. Increased reproductive allocation reduces vegetative allocation and may affect competitive ability and hence survival, explaining the maintenance of the polymorphism. As mycorrhizal SPU plants behave more like nonSPU plants, AM colonization itself could play a major part in the maintenance of the SPU polymorphism.
Resumo:
• Inorganic arsenic (As(i) ) in rice (Oryza sativa) grains is a possible threat to human health, with risk being strongly linked to total dietary rice consumption and consumed rice As(i) content. This study aimed to identify the range and stability of genetic variation in grain arsenic (As) in rice. • Six field trials were conducted (one each in Bangladesh and China, two in Arkansas, USA over 2 yr, and two in Texas, USA comparing flooded and nonflood treatments) on a large number of common rice cultivars (c. 300) representing genetic diversity among international rice cultivars. • Within each field there was a 3-34 fold range in grain As concentration which varied between rice subpopulations. Importantly, As(i) correlated strongly with total As among a subset of 40 cultivars harvested in Bangladesh and China. • Genetic variation at all field sites was a large determining factor for grain As concentration, indicating that cultivars low in grain As could be developed through breeding. The temperate japonicas exhibited lower grain As compared with other subpopulations. Effects for year, location and flooding management were also statistically significant, suggesting that breeding strategies must take into account environmental factors.
Resumo:
Strategies to reduce arsenic (As) in rice grain, below concentrations that represent a serious human health concern, require that the mechanisms of As accumulation within grain be established. Therefore, retranslocation of As species from flag leaves into filling rice grain was investigated.
Arsenic species were delivered through cut flag leaves during grain fill. Spatial unloading within grains was investigated using synchrotron X-ray fluorescence (SXRF) microtomography. Additionally, the effect of germanic acid (a silicic acid analog) on grain As accumulation in arsenite-treated panicles was examined.
Dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) were extremely efficiently retranslocated from flag leaves to rice grain; arsenate was poorly retranslocated, and was rapidly reduced to arsenite within flag leaves; arsenite displayed no retranslocation. Within grains, DMA rapidly dispersed while MMA and inorganic As remained close to the entry point. Germanic acid addition did not affect grain As in arsenite-treated panicles. Three-dimensional SXRF microtomography gave further information on arsenite localization in the ovular vascular trace (OVT) of rice grains.
These results demonstrate that inorganic As is poorly remobilized, while organic species are readily remobilized, from leaves to grain. Stem translocation of inorganic As may not rely solely on silicic acid transporters.
Resumo:
Isatis capadocica, a brassica collected from Iranian arsenic-contaminated mine spoils and control populations, was examined to determine arsenate tolerance, metabolism and accumulation. I. cappadocica exhibited arsenate hypertolerance in both mine and nonmine populations, actively growing at concentrations of > 1 mm arsenate in hydroponic solution. I. cappadocica had an ability to accumulate high concentrations of arsenic in its shoots, in excess of 100 mg kg(-1) DW, with a shoot : root transfer ratio of > 1. The ability to accumulate arsenic was exhibited in both hydroponics and contaminated soils. Tolerance in this species was not achieved through suppression of high-affinity phosphate/arsenate root transport, in contrast to other monocotyledons and dicotyledons. A high percentage (> 50%) of arsenic in the tissues was phytochelatin complexed; however, it is argued that this is a constitutive, rather than an adaptive, mechanism of tolerance.