50 resultados para 13200-005
Resumo:
Recent evidence indicates that the anti-angiogenic peptide endostatin may modulate some of the vasomodulatory effects of vascular endothelial growth factor (VEGF) in the retina, including reduction of blood retinal barrier function although it remains uncertain how endostatin promotes endothelial barrier properties. The current study has sought to examine how physiological levels of endostatin alters VEGF-induced inner BRB function using an in vitro model system and evaluation of occludin and ZO-1 regulatory responses. In addition, the ability of exogenous endostatin to regulate VEGF-mediated retinal vascular permeability in vivo was investigated.
Retinal microvascular endothelial cells (RMEC's) were exposed to various concentrations of endostatin. In parallel studies, RMEC monolayers were treated with vascular endothelial growth factor (VEGF165). Vasopermeability of RMEC monolayers and occludin expression were determined.
Blood retinal barrier integrity was quantified in mouse retina using Evans Blue assay following intravitreal delivery of VEGF165, endostatin or a VEGF/endostatin combination.
Endostatin increased the levels of expression of occludin whilst causing no significant change in FITC-dextran flux across the RMEC monolayer. Endostatin reversed the effects of VEGF165-enhanced permeability between microvascular endothelial cells and induced phosphorylation of occludin. Evans Blue leakage from retinas treated with VEGF was 2.0 fold higher than that of contra-lateral untreated eyes (P<0.05) while leakage of eyes from endostatin treated animals was unchanged. When eyes were injected with a combination of VEGF165 and endostatin there was a significant reduction in retinal vasopermeability when compared to VEGF-injected eyes (P<0.05).
We conclude that endostatin can promote integrity of the retinal endothelial barrier, possibly by preventing VEGF-mediated alteration of tight junction integrity. This suggests that endostatin may be of clinical benefit in ocular disorders where significant retinal vasopermeability changes are present.
Resumo:
Purpose: We investigated the potential for improvement in disease control by use of autologous peripheral blood stem cell transplant (PBSCT) to permit administration of high activities of 186Re-hydroxyethylidene diphosphonate (HEDP) in patients with progressive hormone-refractory prostate cancer (HRPC).
Methods: Eligible patients had progressive HRPC metastatic to bone, good performance status and minimal soft tissue disease. Patients received 5,000 MBq of 186Re-HEDP i.v., followed 14 days later by PBSCT. Response was assessed using PSA, survival, pain scores and quality of life.
Results: Thirty-eight patients with a median age of 67 years (range 50–77) and a median PSA of 57 ng/ml (range 4–3,628) received a median activity of 4,978 MBq 186Re-HEDP (range 4,770–5,100 MBq). The most serious toxicity was short-lived grade 3 thrombocytopenia in 8 (21%) patients. The median survival of the group is 21 months (95%CI 18–24 months) with Kaplan-Meier estimated 1- and 2-year survival rates of 83% and 40% respectively. Thirty-one patients (81%, 95% CI 66–90%) had stable or reduced PSA levels 3 months post therapy while 11 (29%, 95% CI 15–49%) had PSA reductions of >50% lasting >4 weeks. Quality of life measures were stable or improved in 27 (66%) at 3 months.
Conclusion: We have shown that it is feasible and safe to deliver high-activity radioisotope therapy with PBSCT to men with metastatic HRPC. Response rates and survival data are encouraging; however, further research is needed to define optimal role of this treatment approach.
Resumo:
A sequential biological permeable reactive barrier (PRB) was determined to be the best option for remediating groundwater that has become contaminated with a wide range of organic contaminants (i.e., benzene, toluene, ethylbenzene, xylene and polyaromatic hydrocarbons), heavy metals (i.e., lead and arsenic), and cyanide at a former manufactured gas plant after 150 years of operation in Portadown, Northern Ireland. The objective of this study was to develop a modified flyash that could be used in the initial cell within a sequential biological PRB to filter complex contaminated groundwater containing ammonium. Flyash modified with lime (CaOH) and alum was subjected to a series of batch tests which investigated the modified cation exchange capacity (CEC) and rate of removal of anions and cations from the solution. These tests showed that a high flyash composition medium (80%) could remove 8.65 mol of ammonium contaminant for every kilogram of medium. The modified CEC procedure ruled out the possibility of cation exchange as the major removal mechanism. The medium could also adsorb anions as well as cations (i.e., Pb and Cr), but not with the same capacity. The initial mechanism for Pb and Cr removal is probably precipitation. This is followed by sorption, which is possibly the only mechanism for the removal of dichromate anions. Scanning electron microscopic analysis revealed very small (