313 resultados para 100501 Antennas and Propagation
Resumo:
The ability to switch between propagating modes is important for body-centric applications such as medical body area networks where a single node may need to be able to optimise communications for either on-body sensor links or off-body links to the wider network. Therefore, we present a compact 2.45 GHz active mode-switching wearable antenna for both on-body and off-body wireless communications. The single-layer patch antenna was pattern-switched using shorting pins and had an impedance bandwidth of 253 MHz and 217 MHz for the on-body and off-body radiating modes, respectively. An efficiency of 57 % and 56.8 % was obtained for on-body and off-body mode respectively when placed in close proximity to a phantom that represents a muscle issue at 2.45 GHz.
Resumo:
An extension of the pole-zero matching method proposed by Stefano Maci et al. for the analysis of electromagnetic bandgap (EBG) structures composed by lossless dipole-based frequency selective surfaces (FSS) printed on stratified dielectric media, is presented in this paper. With this novel expansion, the dipoles length appears as a variable in the analytical dispersion equation. Thus, modal dispersion curves as a function of the dipoles length can be easily obtained with the only restriction of single Floquet mode propagation. These geometry-dispersion curves are essential for the efficient analysis and design of practical EBG structures, such as waveguides loaded with artificial magnetic conductors (AMC) for miniaturization, or leaky-wave antennas (LWA) using partially reflective surfaces (PRS). These two practical examples are examined in this paper. Results are compared with full-wave 2D and 3D simulations showing excellent agreement, thus validating the proposed technique and illustrating its utility for practical designs.
Resumo:
An architecture to simultaneously affect both amplitude and phase control from a reflectarray element using an impedance transformation unit is demonstrated. It is shown that a wide range of control is possible from a single element, removing the conventional necessity for variable sized elements across an array in order to form a desired reflectarray far-field pattern. Parallel plate waveguide measurements for a 2.2 GHz prototype element validate the phase and amplitude variation available from the element. It is demonstrated that there is sufficient control of the element's reflection response to allow Dolph-Tschebyscheff weighting coefficients for major-lobe to side-lobe ratios of up to 36 dB to be implemented.
Resumo:
A new design method that greatly enhances the reflectivity bandwidth and angular stability beyond what is possible with a simple Salisbury screen is described. The performance improvement is obtained from a frequency selective surface (FSS) which is sandwiched between the outermost 377 Ω/square resistive sheet and the ground plane. This is designed to generate additional reflection nulls at two predetermined frequencies by selecting the size of the two unequal length printed dipoles in each unit cell. A multiband Salisbury screen is realised by adjusting the reflection phase of the FSS to position one null above and the other below the inherent absorption band of the structure. Alternatively by incorporating resistive elements midway on the dipoles, it is shown that the three absorption bands can be merged to create a structure with a −10 dB reflectivity bandwidth which is 52% larger and relatively insensitive to incident angle compared to a classical Salisbury screen having the same thickness. CST Microwave Studio was used to optimise the reflectivity performance and simulate the radar backscatter from the structure. The numerical results are shown to be in close agreement with bistatic measurements for incident angles up to 40° over the frequency range 5.4−18 GHz.
Resumo:
A comprehensive experimental study was performed to identify and discriminate mechanisms contributing to passive intermodulation (PIM) in microstrip transmission lines. The effects of strip length and width, and substrate materials on PIM performance of printed lines were investigated in the GSM900, DCS1800 and UMTS frequency bands. The major features of the experiment design, sample preparation and test setup are discussed in detail. The measurement results have demonstrated that the PIM level cumulatively grows on the longer microstrip lines and decreases on wider strips and, thus, indicated that the distributed resistive nonlinearity of the printed traces represents the dominant mechanism of intermodulation generation in the printed lines on PTFE-based substrates. © 2009 The Institution of Engineering and Technology.
Resumo:
An experimental investigation of the effect of conductor-to-substrate interface on distributed passive intermodulation (PIM) generation in printed microstrip lines has been undertaken using the custom-designed microwave laminates with removed surface bonding layers and with the commercial adhesion promotion applied to the conductor underside. The study of long-term stability of PIM performance of the printed circuits is reported for the first time. The comprehensive measurement results, observations of the selfimprovement of the PIM performance and the effect of panel bending on PIM generation in printed boards with different finishing are presented. A consistent physical interpretation of the observed phenomena is proposed. The results of this study provide new important considerations for the design and characterisation of low-PIM printed circuits.