40 resultados para 100-203_RMT8
Site symmetry dependence of repulsive interactions between chemisorbed oxygen atoms on Pt{100}-(1x1)
Resumo:
Ab initio total energy calculations using density functional theory with the generalized gradient approximation have been performed for the chemisorption of oxygen atoms on a Pt{100}-(1 x 1) slab. Binding energies for the adsorption of oxygen on different high-symmetry sites are presented. The bridge site is the most stable at a coverage of 0.5 ML, followed by the fourfold hollow site. The atop site is the least stable. This finding is rationalized by analyzing the ''local structures'' formed upon oxygen chemisorption. The binding energies and heats of adsorption at different oxygen coverages show that pairwise repulsive interactions are considerably stronger between oxygen atoms occupying fourfold sites than those occupying bridge sites. Analysis of the partial charge densities associated with Bloch states demonstrates that the O-Pt bond is considerably more localized at the bridge site. These effects cause a sharp drop in the heats of adsorption for oxygen on hollow sites when the coverage is increased from 0.25 to 0.5 ML. Mixing between oxygen p orbitals and Pt d orbitals can be observed over the whole metal d-band energy range.
Resumo:
Adsorption of 0.5 monolayer of N adatoms on W{100} results in a sharp (root 2 X root 2)R45 degrees LEED pattern. The only previous quantitative LEED study of this system gave a simple overlayer model with a Pendry R-factor of 0.55. An exhaustive search has been made of possible structures, including a novel vacancy reconstruction, displacive reconstructions and underlayer adsorption. From this work a new overlayer structure is derived with an R(p) value of 0.22, displaying a considerable buckling of 0.27 +/- 0.05 Angstrom within the second W layer and consequently involving large changes in the interlayer spacings of the surface. The N adatom is pseudo-five-fold coordinated to the W surface, bonding to a second-layer W atom with a nearest-neighbour bond length of 2.13 Angstrom and with the four next-nearest-neighbour W atoms in the surface plane at 2.27 Angstrom. The structure does not resolve the work function anomaly observed on this surface.
Resumo:
Deposition of 0.5 ML of Cu on W(100) leads to the formation of a sharp c(2 x 2) structure when the surface is annealed at 800 K. A LEED intensity analysis reveals that the Cu atoms are adsorbed displacively into W sites, forming an ordered 2D surface alloy. Due to the lattice mismatch between copper and tungsten, a substantial buckling of the first layer of the alloy is also observed. The clean, bulk terminated W(100) surface is only just stable relative to the c(2 x 2) vacancy covered W(100) surface. This relative stability of the vacancy structure explains the driving force behind the formation of this alloy.
Resumo:
We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with Swift ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten et al. (2012, ApJ, 757, 31). We find that the absorption minimum for the hydrogen lines is never seen below ~11 000 km s-1 but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 M⊙ to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the γ-rays is driving the early evolution of these lines. The Spitzer 4.5 μm band shows a significant flux excess, which we attribute to CO fundamental band emission or a thermal dust echo although further work using late time data is needed. Thedistance and in particular the extinction, where we use spectral modelling to put further constraints, is discussed in some detail as well as the sensitivity of the hydrodynamical modelling to errors in these quantities. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by ~75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag day-1 respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011, ApJ, 739, L37) and which is also consistent with the results from the hydrodynamical modelling. Figures 2, 3, Tables 3-10, and Appendices are available in electronic form at http://www.aanda.orgThe photometric tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A17
Resumo:
The design, fabrication, and measured results are presented for a reconfigurable reflectarray antenna based on liquid crystals (LCs)which operates above 100 GHz. The antenna has been designed to provide beam scanning capabilities over a wide angular range, a large bandwidth,and reduced side-lobe level (SLL). Measured radiation patterns are in good agreement with simulations, and show that the antenna generates an electronically steerable beam in one plane over an angular range of 55◦ in the frequency band from 96 to 104 GHz. The SLL is lower than −13 dB for all the scan angles and −18 dB is obtained over 16% of the scan range. The measured performance is significantly better than previously published results for this class of electronically tunable antenna, and moreover, veri-fies the accuracy of the proposed procedure for LC modeling and antenna design.
Resumo:
High resolution soft x-ray photoemission spectroscopy (SXPS) have been used to study the high temperature thermal stability of ultra-thin atomic layer deposited (ALD) HfO2 layers (∼1 nm) on sulphur passivated and hydrofluoric acid (HF) treated germanium surfaces. The interfacial oxides which are detected for both surface preparations following HfO2 deposition can be effectively removed by annealing upto 700 °C without any evidence of chemical interaction at the HfO2/Ge interface. The estimated valence and conduction band offsets for the HfO2/Ge abrupt interface indicated that effective barriers exist to inhibit carrier injection.
Resumo:
The reduction of CO2 on copper electrodes has attracted great attentions in the last decades, since it provides a sustainable approach for energy restore. During the CO2 reduction process, the electron transfer to COads is experimentally suggested to be the crucial step. In this work, we examine two possible pathways in CO activation, i.e. to generate COHads and CHOads, respectively, by performing the state-of-the-art constrained ab initio molecular dynamics simulations on the charged Cu(100) electrode under aqueous conditions, which is close to the realistic electrochemical condition. The free energy profile in the formation of COHads via the coupled proton and electron transfer is plotted. Furthermore, by Bader charge analyses, a linear relationship between C-O bond distance and the negative charge in CO fragment is unveiled. The formation of CHOads is identified to be a surface catalytic reaction, which requires the adsorption of H atom on the surface first. By comparing these two pathways, we demonstrate that kinetically the formation of COHads is more favored than that of CHOads, while CHOads is thermodynamically more stable. This work reveals that CO activation via COHads intermediate is an important pathway in electrocatalysis, which could provide some insights into CO2 electroreduction over Cu electrodes.