34 resultados para Âge Moderne
Resumo:
Results for energy levels, radiative rates and electron impact excitation (effective) collision strengths for transitions in Be-like Cl XIV, K XVI and Ge XXIX are reported. For the calculations of energy levels and radiative rates the general-purpose relativistic atomic structure package is adopted, while for determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code is used. Oscillator strengths, radiative rates and line strengths are listed for all E1, E2, M1 and M2 transitions among the lowest 98 levels of the n ≤ 4 configurations. Furthermore, lifetimes are provided for all levels and comparisons made with available theoretical and experimental results. Resonances in the collision strengths are resolved in a fine energy mesh and averaged over a Maxwellian velocity distribution to obtain the effective collision strengths. Results obtained are listed over a wide temperature range up to 107.8 K, depending on the ion.
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions. © 2013 The Royal Swedish Academy of Sciences.
Resumo:
The efficiency of solar-energy-conversion devices depends on the absorption region and intensity of the photon collectors. Organic chromophores, which have been widely stabilized on inorganic semiconductors for light trapping, are limited by the interface between the chromophore and semiconductor. Herein we report a novel orange zinc germanate (Zn-Ge-O) with a chromophore-like structure, by which the absorption region can be dramatically expanded. Structural characterizations and theoretical calculations together reveal that the origin of visible-light response can be attributed to the unusual metallic Ge-Ge bonds which act in a similar way to organic chromophores. Benefiting from the enhanced light harvest, the orange Zn-Ge-O demonstrates superior capacity for solar-driven hydrogen production.
Resumo:
High resolution soft x-ray photoemission spectroscopy (SXPS) have been used to study the high temperature thermal stability of ultra-thin atomic layer deposited (ALD) HfO2 layers (∼1 nm) on sulphur passivated and hydrofluoric acid (HF) treated germanium surfaces. The interfacial oxides which are detected for both surface preparations following HfO2 deposition can be effectively removed by annealing upto 700 °C without any evidence of chemical interaction at the HfO2/Ge interface. The estimated valence and conduction band offsets for the HfO2/Ge abrupt interface indicated that effective barriers exist to inhibit carrier injection.