56 resultados para >1 mm
Resumo:
This study assessed the contribution of L-type Ca2+ channels and other Ca2+ entry pathways to Ca2+ store refilling in choroidal arteriolar smooth muscle. Voltage-clamp recordings were made from enzymatically isolated choroidal microvascular smooth muscle cells and from cells within vessel fragments (containing <10 cells) using the whole-cell perforated patch-clamp technique. Cell Ca2+ was estimated by fura-2 microfluorimetry. After Ca2+ store depletion with caffeine (10 mM), refilling was slower in cells held at -20 mV compared to -80 mV (refilling half-time was 38 +/- 10 and 20 +/- 6 s, respectively). To attempt faster refilling via L-type Ca2+ channels, depolarising steps from -60 to -20 mV were applied during a 30 s refilling period following caffeine depletion. Each step activated L-type Ca2+ currents and [Ca2+]i transients, but failed to accelerate refilling. At -80 mV and in 20 mM TEA, prolonged caffeine exposure produced a transient Ca2+-activated Cl- current (I(Cl)(Ca)) followed by a smaller sustained current. The sustained current was resistant to anthracene-9-carboxylic acid (1 mM; an I(Cl)(Ca) blocker) and to BAPTA AM, but was abolished by 1 microM nifedipine. This nifedipine-sensitive current reversed at +29 +/- 2 mV, which shifted to +7 +/- 5 mV in Ca2+-free solution. Cyclopiazonic acid (20 microM; an inhibitor of sarcoplasmic reticulum Ca2+-ATPase) also activated the nifedipine-sensitive sustained current. At -80 mV, a 5 s caffeine exposure emptied Ca2+ stores and elicited a transient I(Cl)(Ca). After 80 s refilling, another caffeine challenge produced a similar inward current. Nifedipine (1 microM) during refilling reduced the caffeine-activated I(Cl)(Ca) by 38 +/- 5 %. The effect was concentration dependent (1-3000 nM, EC50 64 nM). In Ca2+-free solution, store refilling was similarly depressed (by 46 +/- 6 %). Endothelin-1 (10 nM) applied at -80 mV increased [Ca2+]i, which subsided to a sustained 198 +/- 28 nM above basal. Cell Ca2+ was then lowered by 1 microM nifedipine (to 135 +/- 22 nM), which reversed on washout. These results show that L-type Ca2+ channels fail to contribute to Ca2+ store refilling in choroidal arteriolar smooth muscle. Instead, they refill via a novel non-selective store-operated cation conductance that is blocked by nifedipine.
Resumo:
Isatis capadocica, a brassica collected from Iranian arsenic-contaminated mine spoils and control populations, was examined to determine arsenate tolerance, metabolism and accumulation. I. cappadocica exhibited arsenate hypertolerance in both mine and nonmine populations, actively growing at concentrations of > 1 mm arsenate in hydroponic solution. I. cappadocica had an ability to accumulate high concentrations of arsenic in its shoots, in excess of 100 mg kg(-1) DW, with a shoot : root transfer ratio of > 1. The ability to accumulate arsenic was exhibited in both hydroponics and contaminated soils. Tolerance in this species was not achieved through suppression of high-affinity phosphate/arsenate root transport, in contrast to other monocotyledons and dicotyledons. A high percentage (> 50%) of arsenic in the tissues was phytochelatin complexed; however, it is argued that this is a constitutive, rather than an adaptive, mechanism of tolerance.
Resumo:
Objective: The authors evaluated the results of primary transpupillary thermotherapy for choroidal melanoma in 100 cases. Design: Prospective nonrandomized analysis of treatment method. Participants: One hundred patients with choroidal melanoma were studied. Main Outcome Measures: Tumor response, ocular side effects, and visual results. Results: Of 100 consecutive patients with choroidal melanoma treated with transpupillary thermotherapy, the mean tumor basal diameter was 7.1 mm and tumor thickness was 2.8 mm. The tumor margin touched the optic disc in 34 eyes (34%) and was beneath the fovea in 42 eyes (42%). Documented growth was present in 64 eyes (64%), and known clinical risks for growth were present in all of the remaining 36 eyes (36%), with an average of 4 of 5 statistical risk factors for growth per tumor. After a mean of three treatment sessions and 14 months of follow-up, the mean tumor thickness was reduced to 1.4 mm. Treatment was successful in 94 eyes (94%) and failed in 6 eyes (6%). Three patients with amelanotic tumors showed no initial response to thermotherapy, but subsequent intravenous indocyanine green administration during thermotherapy resulted in improved heat absorption and tumor regression to a flat scar. The six eyes classified as treatment failures included four eyes with tumors that showed partial or no response to thermotherapy, thus requiring plaque radiotherapy or enucleation, and two eyes with recurrence, subsequently controlled with additional thermotherapy. After treatment, the visual acuity was the same (within 1 line) or better than the pretreatment visual acuity in 58 eyes (58%) and worse in 42 eyes (42%). The main reasons for poorer vision included treatment through the foveola for subfoveal tumor (25 eyes), retinal traction (10 eyes), retinal vascular obstruction (5 eyes), optic disc edema (1 eye), and unrelated ocular ischemia (1 eye). Temporal location (versus nasal and superior, P = 0.02) and greater distance from the optic disc (P = 0.04) were risks for retinal traction. Conclusions: Transpupillary thermotherapy may be an effective treatment for small posterior choroidal melanoma, especially those near the optic disc and fovea. Despite satisfactory local tumor control, ocular side effects can result in decreased vision. Longer follow- up will be necessary to assess the impact of thermotherapy on ultimate local tumor control and metastatic disease.
Resumo:
Purpose: The dose delivery accuracy of 30 clinical step and shoot intensity modulated radiation therapy plans was investigated using the single integrated multileaf collimator controller of the Varian Truebeam linear accelerator (linac) (Varian Medical Systems, Palo Alto, CA) and compared with the dose delivery accuracy on a previous generation Varian 2100CD C-Series linac.
Methods and Materials: Ten prostate, 10 prostate and pelvic node, and 10 head-and-neck cases were investigated in this study. Dose delivery accuracy on each linac was assessed using Farmer ionization chamber point dose measurements, 2-dimensional planar ionization chamber array measurements, and the corresponding Varian dynamic log files. Absolute point dose measurements, fluence delivery accuracy, leaf position accuracy, and the overshoot effect were assessed for each plan.
Results: Absolute point dose delivery accuracy increased by 1.5% on the Truebeam compared with the 2100CD linac. No improvement in fluence delivery accuracy between the linacs, at a gamma criterion of 3%/3 mm was measured using the 2-dimensional ionization chamber array, with median (interquartile range) gamma passing rates of 98.99% (97.70%-99.72%) and 99.28% (98.26%-99.75%) for the Truebeam and 2100CD linacs, respectively. Varian log files also showed no improvement in fluence delivery between the linacs at 3%/3 mm, with median gamma passing rates of 99.97% (99.93%-99.99%) and 99.98% (99.94%-100%) for the Truebeam and 2100CD linacs, respectively. However, log files revealed improved leaf position accuracy and fluence delivery at 1%/1 mm criterion on the Truebeam (99.87%; 99.78%-99.94%) compared with the 2100CD linac (97.87%; 91.93%-99.49%). The overshoot effect, characterized on the 2100CD linac, was not observed on the Truebeam.
Conclusions: The integrated multileaf collimator controller on the Varian Truebeam improves clinical treatment delivery accuracy of step and shoot intensity modulated radiation therapy fields compared with delivery on a Varian C-series linac. © 2014.
Resumo:
Plasma-induced non-equilibrium liquid chemistry is used to synthesize gold nanoparticles (AuNPs) without using any reducing or capping agents. The morphology and optical properties of the synthesized AuNPs are characterized by transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. Plasma processing parameters affect the particle shape and size and the rate of the AuNP synthesis process. Particles of different shapes (e. g. spherical, triangular, hexagonal, pentagonal, etc) are synthesized in aqueous solutions. In particular, the size of the AuNPs can be tuned from 5 nm to several hundred nanometres by varying the initial gold precursor (HAuCl4) concentration from 2.5 mu M to 1 mM. In order to reveal details of the basic plasma-liquid interactions that lead to AuNP synthesis, we have measured the solution pH, conductivity and hydrogen peroxide (H2O2) concentration of the liquid after plasma processing, and conclude that H2O2 plays the role of the reducing agent which converts Au+3 ions to Au-0 atoms, leading to nucleation growth of the AuNPs.
Resumo:
Objectives: To determine, by means of static fracture testing the effect of the tooth preparation design and the elastic modulus of the cement on the structural integrity of the cemented machined ceramic crown-tooth complex.
Methods: Human maxillary extracted premolar teeth were prepared for all-ceramic crowns using two preparation designs; a standard preparation in accordance with established protocols and a novel design with a flat occlusal design. All-ceramic feldspathic (Vita MK II) crowns were milled for all the preparations using a CAD/CAM system (CEREC-3). The machined all-ceramic crowns were resin bonded to the tooth structure using one of three cements with different elastic moduli: Super-Bond C&B, Rely X Unicem and Panavia F 2.0. The specimens were subjected to compressive force through a 4 mm diameter steel ball at a crosshead speed of 1 mm/min using a universal test machine (Loyds Instrument Model LRX.). The load at the fracture point was recorded for each specimen in Newtons (N). These values were compared to a control group of unprepared/unrestored teeth.
Results: There was a significant difference between the control group, with higher fracture strength, and the cemented samples regardless of the occlusal design and the type of resin cement. There was no significant difference in mean fracture load between the two designs of occlusal preparation using Super-Bond C&B. For the Rely X Unicem and Panavia F 2.0 cements, the proposed preparation design with a flat occlusal morphology provides a system with increased fracture strength.
Significance: The proposed novel flat design showed less dependency on the resin cement selection in relation to the fracture strength of the restored tooth. The choice of the cement resin, with respect to its modulus of elasticity, is more important in the anatomic design than in the flat design. © 2013 Academy of Dental Materials.
Resumo:
Chloride-induced corrosion of steel is one of the most commonly found problems affecting the durability of reinforced concrete structures in both marine environment and where de-icing salt is used in winter. As the significance of micro-cracks on chloride induced corrosion is not well documented, 24 reinforced concrete beams (4 different mixes - one containing Portland cement and another containing 35% ground granulated blastfurnace slag at 0.45 and 0.65 water-binder ratios) were subjected to three levels of sustained lateral loading (0%, 50% and 100% of the load that can induce 0.1 mm wide cracks on the tension surface of beam - F0.1) in this work. The beams were then subjected to weekly cycles of wetting with 10% NaCl solution for 1 day followed by 6 days of drying at 20 (±1) °C up to an exposure period of 60 weeks. The progress of corrosion of steel was monitored using half-cell potential apparatus and linear polarisation resistance (LPR) test. These results have shown that macro-cracks (at load F0.1) and micro-cracks (at 50% of F0.1) greatly accelerated both the initiation and propagation stages of the corrosion of steel in the concrete beams. Lager crack widths for the F0.1 load cases caused higher corrosion rates initially, but after about 38 weeks of exposure, there was a decrease in the rate of corrosion. However, such trends could not be found in 50% F 0.1 group of beams. The extent of chloride ingress also was influenced by the load level. These findings suggest that the effect of micro-cracking at lower loads are very important for deciding the service life of reinforced concrete structures in chloride exposure environments. © 2014 4th International Conference on the Durability of Concrete Structures.
Resumo:
The motivation for this study was to reduce physics workload relating to patient- specific quality assurance (QA). VMAT plan delivery accuracy was determined from analysis of pre- and on-treatment trajectory log files and phantom-based ionization chamber array measurements. The correlation in this combination of measurements for patient-specific QA was investigated. The relationship between delivery errors and plan complexity was investigated as a potential method to further reduce patient-specific QA workload. Thirty VMAT plans from three treatment sites - prostate only, prostate and pelvic node (PPN), and head and neck (H&N) - were retrospectively analyzed in this work. The 2D fluence delivery reconstructed from pretreatment and on-treatment trajectory log files was compared with the planned fluence using gamma analysis. Pretreatment dose delivery verification was also car- ried out using gamma analysis of ionization chamber array measurements compared with calculated doses. Pearson correlations were used to explore any relationship between trajectory log file (pretreatment and on-treatment) and ionization chamber array gamma results (pretreatment). Plan complexity was assessed using the MU/ arc and the modulation complexity score (MCS), with Pearson correlations used to examine any relationships between complexity metrics and plan delivery accu- racy. Trajectory log files were also used to further explore the accuracy of MLC and gantry positions. Pretreatment 1%/1 mm gamma passing rates for trajectory log file analysis were 99.1% (98.7%-99.2%), 99.3% (99.1%-99.5%), and 98.4% (97.3%-98.8%) (median (IQR)) for prostate, PPN, and H&N, respectively, and were significantly correlated to on-treatment trajectory log file gamma results (R = 0.989, p < 0.001). Pretreatment ionization chamber array (2%/2 mm) gamma results were also significantly correlated with on-treatment trajectory log file gamma results (R = 0.623, p < 0.001). Furthermore, all gamma results displayed a significant correlation with MCS (R > 0.57, p < 0.001), but not with MU/arc. Average MLC position and gantry angle errors were 0.001 ± 0.002 mm and 0.025° ± 0.008° over all treatment sites and were not found to affect delivery accuracy. However, vari- ability in MLC speed was found to be directly related to MLC position accuracy. The accuracy of VMAT plan delivery assessed using pretreatment trajectory log file fluence delivery and ionization chamber array measurements were strongly correlated with on-treatment trajectory log file fluence delivery. The strong corre- lation between trajectory log file and phantom-based gamma results demonstrates potential to reduce our current patient-specific QA. Additionally, insight into MLC and gantry position accuracy through trajectory log file analysis and the strong cor- relation between gamma analysis results and the MCS could also provide further methodologies to both optimize the VMAT planning and QA process.
Resumo:
Background and purpose: We are developing a technique for highly focused vocal cord irradiation in early glottic carcinoma to optimally treat a target volume confined to a single cord. This technique, in contrast with the conventional methods, aims at sparing the healthy vocal cord. As such a technique requires sub-mm daily targeting accuracy to be effective, we investigate the accuracy achievable with on-line kV-cone beam CT (CBCT) corrections. Materials and methods: CBCT scans were obtained in 10 early glottic cancer patients in each treatment fraction. The grey value registration available in X-ray volume imaging (XVI) software (Elekta, Synergy) was applied to a volume of interest encompassing the thyroid cartilage. After application of the thus derived corrections, residue displacements with respect to the planning CT scan were measured at clearly identifiable relevant landmarks. The intra- and inter-observer variations were also measured. Results: While before correction the systematic displacements of the vocal cords were as large as 2.4 ± 3.3 mm (cranial-caudal population mean ± SD Σ), daily CBCT registration and correction reduced these values to less than 0.2 ± 0.5 mm in all directions. Random positioning errors (SD σ) were reduced to less than 1 mm. Correcting only for translations and not for rotations did not appreciably affect this accuracy. The residue random displacements partly stem from intra-observer variations (SD = 0.2-0.6 mm). Conclusion: The use of CBCT for daily image guidance in combination with standard mask fixation reduced systematic and random set-up errors of the vocal cords to <1 mm prior to the delivery of each fraction dose. Thus, this facilitates the high targeting precision required for a single vocal cord irradiation. © 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background and Purpose: To quantify respiratory motion of the vocal cords during normal respiration using 4D-CT. The final goal is to develop a technique for single vocal cord irradiation (SVCI) in early glottic carcinoma. Sparing the non-involved cord and surrounding structures has the potential to preserve voice quality and allow re-irradiation of recurrent and second primary tumors. Material and methods: Four-dimensional CTs of 1 mm slice thickness from 10 early glottic carcinoma patients were acquired. The lateral dimensions of the air gap separating the vocal cords were measured anteriorly, at mid-level and posteriorly at each phase of the 4D-CTs. The corresponding anterior-posterior gaps were similarly measured. Cranio-caudal vocal cords movements during breathing were derived from the shifts of the arythenoids. Results: The population-averaged mean gap size ± the corresponding standard deviation due to breathing (SDB) for the lateral gaps was 5.8 ± 0.7 mm anteriorly, 8.7 ± 0.9 mm at mid-level, and 11.0 ± 1.3 mm posteriorly. Anterior-posterior gap values were 21.7 ± 0.7 mm, while cranio-caudal shift SDB was 0.8 mm. Conclusion: Vocal cords breathing motions were found to be small relative to their separation. Hence, breathing motion does not seem to be a limiting factor for SVCI. © 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER.
Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of I-P = 3.0 MA/B-T = 2.9 T H-mode pulses with an input power of P-IN = 23 MW, a stored energy of similar to 6 MJ and regular type I ELMs at Delta W-ELM = 0.3 MJ and f(ELM) similar to 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within similar to 1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (delta W similar to 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957-64).
Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (similar to 80 mu m) were released. Almost 1 mm (similar to 6 mm(3)) of W was moved by similar to 150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j x B forces. The evaporation rate determined from spectroscopy is 100 times less than expected from steady state melting and is thus consistent only with transient melting during the individual ELMs. Analysis of IR data and spectroscopy together with modelling using the MEMOS code Bazylev et al 2009 J. Nucl. Mater. 390-391 810-13 point to transient melting as the main process. 3D MEMOS simulations on the consequences of multiple ELMs on damage of tungsten castellated armour have been performed.
These experiments provide the first experimental evidence for the absence of significant melt splashing at transient events resembling mitigated ELMs on ITER and establish a key experimental benchmark for the MEMOS code.
Resumo:
We study properties of intensity fluctuations in NOAA Active Region 11250 observed on 13 July 2011 starting at UT 13:32. Included are data obtained in the EUV bands of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO/AIA) as well as nearly simultaneous observations of the chromosphere made, at much higher spatial and temporal resolution, with the Rapid Oscillations in the Solar Atmosphere (ROSA) and Hydrogen-Alpha Rapid Dynamics camera (HARDcam) systems at the Dunn Solar Telescope. A complex structure seen in both the ROSA/HARDcam and SDO data sets comprises a system of loops extending outward from near the boundary of the leading sunspot umbra. It is visible in the ROSA Ca II K and HARDcam Hα images, as well as the SDO 304 Å, 171 Å and 193 Å channels, and it thus couples the chromosphere, transition region and corona. In the ground-based images the loop structure is 4.1 Mm long. Some 17.5 Mm, can be traced in the SDO/AIA data. The chromospheric emissions observed by ROSA and HARDcam appear to occupy the inner, and apparently cooler and lower, quarter of the loop. We compare the intensity fluctuations of two points within the structure. From alignment with SDO/HMI images we identify a point "A" near the loop structure, which sits directly above a bipolar magnetic feature in the photosphere. Point "B" is characteristic of locations within the loops that are visible in both the ROSA/HARDcam and the SDO/AIA data. The intensity traces for point A are quiet during the first part of the data string. At time ~ 19 min they suddenly begin a series of impulsive brightenings. In the 171 Å and 193 Å coronal lines the brightenings are localized impulses in time, but in the transition region line at 304 Å they are more extended in time. The intensity traces in the 304 Å line for point B shows a quasi-periodic signal that changes properties at about 19 min. The wavelet power spectra are characterized by two periodicities. A 6.7 min period extends from the beginning of the series until about 25 minutes, and another signal with period ~3 min starts at about 20 min. The 193 Å power spectrum has a characteristic period of 5 min, before the 20 min transition and a 2.5 min periodicity afterward. In the case of HARDcam Hα data a localized 4 min periodicity can be found until about 7 min, followed by a quiet regime. After ~20 min a 2.3 min periodicity appears. Interestingly a coronal loop visible in the 94 Å line that is centrally located in the AR, running from the leading umbra to the following polarity, at about time 20 min undergoes a strong brightening beginning at the same moment all along 15 Mm of its length. The fact that these different signals all experience a clear-cut change at time about 20 min suggests an underlying organizing mechanism. Given that point A has a direct connection to the photospheric magnetic bipole, we conjecture that the whole extended structure is connected in a complex manner to the underlying magnetic field. The periodicities in these features may favor the wave nature rather than upflows and interpretations will be discussed.
Resumo:
Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.
Resumo:
Aesthetics of concrete structures is directly related to the quality of their surface finish. The objective of this investigation was to examine the effect of rheological properties of cement-based mortars on the quality of their surface finish. The study was divided into two phases. Firstly, the influence of the mix composition of mortars, viz. the water to cement (w/c) ratio, the sand content and the superplasticiser (SP) dosage on their rheology was evaluated. Secondly, the surface finish quality was characterised and related to the rheology of the studied systems. Rheology of these materials, i.e. the yield value, was measured using a vane viscometer. The quality of the surface finish was assessed by quantification of the surface air voids by analysing digital photographs of the mould finished sample surfaces. It was found that an increase in the w/c ratio and the SP content decreased the yield value, whilst the increase in the sand content had an opposite effect. When the surface quality is concerned, an increase in the yield value was found to increase the total content of the surface air voids and especially those with size smaller than 1 mm in diameter. Moreover, the analysis of the location of the surface air voids along the height of the sample revealed that with the increase in the yield value their concentration was higher in the bottom section of the analysed samples.
Impact of prosthodontic rehabilitation on the chewing efficiency of partially dentate older patients
Resumo:
Objectives: This study compared two tooth replacement strategies for partially dentate older patients namely; removable partial dentures (RPDs) and functionally orientated treatment based on the shortened dental arch (SDA) concept. Patients were compared in terms of chewing efficiency after prosthodontic rehabilitation. Methods: Chewing efficiency was assessed electronically by a two-colour gum-mixing test. Specimens were assembled from two different colours of chewing gums with a size of 30 x 18 x 3 mm. After participants chewed for 20 cycles, the gum was retrieved, flattened to a 1-mm-thick wafer, and digitized with a flatbed image scanner. The pixels of unmixed colour in the specimen were counted by means of Adobe Photoshop 2.0R software (Adobe Systems, San Jose, CA, USA), and the ratio to the pixels of the entire frame was computed. This ratio is called the Unmixed Fraction (UF). The more efficiently the specimen is chewed, the less unmixed colour remains, and the smaller the gum becomes. Consequently, a low unmixed fraction corresponds to good chewing efficiency. Results: 32 patients completed the chewing efficiency test (17 RPDs and 15 SDA). The mean UF recorded for the SDA group was not significantly different to that recorded for the RPD group (p>0.05, unpaired t-test). Conclusion: These results indicate that prosthodontic rehabilitation according to the principles of the SDA is equivalent to RPDs in terms of restoration of chewing ability for partially dentate older patients.