66 resultados para : Stockholm
Resumo:
Background and aims: In 1989 a number of registers in Europe began recording new cases of type 1 diabetes diagnosed in children aged under 15 years using a common protocol. Trends in incidence rate during the 20 year period 1989-2008 are described.
Materials and methods: All registers operate in geographically defined regions and are based on a clinical diagnosis. When possible, completeness of registration in each register is assessed using capture-recapture methodology by identifying primary and secondary sources of ascertainment. The completeness estimate is obtained by identifying the numbers of cases identified by the primary source only, by the secondary source only and by both the primary and the secondary sources.
Results: Other registers have joined the Group since 1989, and 21 registers in 15 countries continue to submit registration data. In the first five years (1989-93) incidence rates varied from 3.2 per 100,000 in the Former Yugoslav Republic of Macedonia to 25.8 per 100,000 in the Stockholm area of Sweden. In the last five years (2004-2008) these same two registers again had the lowest and highest incidence, but rates had increased to 5.8 per 100,000 and 36.6 per 100,000, respectively. During the 20 year period all but two of the 21 registers showed statistically significant rates of increase (median rate of increase 4% per annum), and similar figures were obtained when this median rate of increase was estimated for the first half of the period (1989-98) and for the second half (1999-2008) . However, rates of increase differed significantly between the first half and the second half of the period for eight of the 17 registers with adequate coverage of both periods; four registers showing significantly higher rates of increase in the first half and four significantly higher rates in the second half.
Conclusion: The childhood type 1 diabetes incidence rate continues to rise across Europe by approximately 4% per annum, but the increase within a register is not necessarily uniform with periods of less rapid and more rapid increase in incidence occurring in some registers. This pattern of change suggests that important risk exposures differ over time in different European countries. Further time trend analysis and comparison of the patterns in defined regions are warranted.
Resumo:
Background and aims: In 1989 a number of registers in Europe began recording new cases of type 1 diabetes diagnosed in children aged under 15 years using a common protocol. Trends in incidence rate during the 20 year period 1989-2008 are described.
Materials and methods: All registers operate in geographically defined regions and are based on a clinical diagnosis. When possible, completeness of registration in each register is assessed using capture-recapture methodology by identifying primary and secondary sources of ascertainment. The completeness estimate is obtained by identifying the numbers of cases identified by the primary source only, by the secondary source only and by both the primary and the secondary sources.
Results: Other registers have joined the Group since 1989, and 21 registers in 15 countries continue to submit registration data. In the first five years (1989-93) incidence rates varied from 3.2 per 100,000 in the Former Yugoslav Republic of Macedonia to 25.8 per 100,000 in the Stockholm area of Sweden. In the last five years (2004-2008) these same two registers again had the lowest and highest incidence, but rates had increased to 5.8 per 100,000 and 36.6 per 100,000, respectively. During the 20 year period all but two of the 21 registers showed statistically significant rates of increase (median rate of increase 4% per annum), and similar figures were obtained when this median rate of increase was estimated for the first half of the period (1989-98) and for the second half (1999-2008) . However, rates of increase differed significantly between the first half and the second half of the period for eight of the 17 registers with adequate coverage of both periods; four registers showing significantly higher rates of increase in the first half and four significantly higher rates in the second half.
Conclusion: The childhood type 1 diabetes incidence rate continues to rise across Europe by approximately 4% per annum, but the increase within a register is not necessarily uniform with periods of less rapid and more rapid increase in incidence occurring in some registers. This pattern of change suggests that important risk exposures differ over time in different European countries. Further time trend analysis and comparison of the patterns in defined regions are warranted.
Resumo:
The inherent difficulty of thread-based shared-memory programming has recently motivated research in high-level, task-parallel programming models. Recent advances of Task-Parallel models add implicit synchronization, where the system automatically detects and satisfies data dependencies among spawned tasks. However, dynamic dependence analysis incurs significant runtime overheads, because the runtime must track task resources and use this information to schedule tasks while avoiding conflicts and races.
We present SCOOP, a compiler that effectively integrates static and dynamic analysis in code generation. SCOOP combines context-sensitive points-to, control-flow, escape, and effect analyses to remove redundant dependence checks at runtime. Our static analysis can work in combination with existing dynamic analyses and task-parallel runtimes that use annotations to specify tasks and their memory footprints. We use our static dependence analysis to detect non-conflicting tasks and an existing dynamic analysis to handle the remaining dependencies. We evaluate the resulting hybrid dependence analysis on a set of task-parallel programs.
Resumo:
We present BDDT, a task-parallel runtime system that dynamically discovers and resolves dependencies among parallel tasks. BDDT allows the programmer to specify detailed task footprints on any memory address range, multidimensional array tile or dynamic region. BDDT uses a block-based dependence analysis with arbitrary granularity. The analysis is applicable to existing C programs without having to restructure object or array allocation, and provides flexibility in array layouts and tile dimensions.
We evaluate BDDT using a representative set of benchmarks, and we compare it to SMPSs (the equivalent runtime system in StarSs) and OpenMP. BDDT performs comparable to or better than SMPSs and is able to cope with task granularity as much as one order of magnitude finer than SMPSs. Compared to OpenMP, BDDT performs up to 3.9× better for benchmarks that benefit from dynamic dependence analysis. BDDT provides additional data annotations to bypass dependence analysis. Using these annotations, BDDT outperforms OpenMP also in benchmarks where dependence analysis does not discover additional parallelism, thanks to a more efficient implementation of the runtime system.
Resumo:
Nonlinear phenomena play an essential role in the sound production process of many musical instruments. A common source of these effects is object collision, the numerical simulation of which is known to give rise to stability
issues. This paper presents a method to construct numerical schemes that conserve the total energy in simulations of one-mass systems involving collisions, with no conditions imposed on any of the physical or numerical parameters.
This facilitates the adaptation of numerical models to experimental data, and allows a more free parameter adjustment in sound synthesis explorations. The energy preservedness of the proposed method is tested and demonstrated though several examples, including a bouncing ball and a non-linear oscillator, and implications regarding the wider applicability are discussed.