537 resultados para ionic surfactant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knowledge of the chemical stability as a function of the temperature of ionic liquids (ILs) in the presence of other molecules such as water is crucial prior to developing any no GO industrial application and process involving these novel materials. Fluid phase equilibria and density over a large range of temperature and composition can give basic information on IL purity and chemical stability. The IL scientific community requires accurate measurements accessed from reference data. In this work, the stability of different alkyl sulfate-based ILs in the presence of water and various alcohols (methanol, ethanol, 1-butanol, and 1-octanol) was investigated to understand their stability as a function of temperature up to 423.15 K over the hydrolysis and transesterification reactions, respectively. From this investigation, it was clear that methyl sulfate- and ethyl sulfate-based ILs are not stable in the presence of water, since hydrolysis of the methyl sulfate or ethyl sulfate anions to methanol or ethanol and hydrogenate anion is undoubtedly observed. Such observations could help to explain the differences observed for the physical properties published in the literature by various groups. Furthermore, it appears that a thermodynamic equilibrium process drives these hydrolysis reactions. In other words, these hydrolysis reactions are in fact reversible, providing the possibility to re-form the desired alkyl sulfate anions by a simple transesterification reaction between hydrogen sulfate-based ILs and the corresponding alcohol (methanol or ethanol). Additionally, butyl sulfate- and octyl sulfate-based ILs appear to follow this pattern but under more drastic conditions. In these systems, hydrolysis is observed in both cases after several months for temperatures up to 423 K in the presence of water. Therein, the partial miscibility of hydrogen sulfate-based ILs with long chain alcohols (1-butanol and 1-octanol) can help to explain the enhanced hydrolytic stability of the butyl sulfate- and octyl sulfate-based ILs compared with the methyl or ethyl sulfate systems. Additionally, rapid transesterification reactions are observed during liquid-liquid equilibrium studies as a function of temperature for binary systems of (hydrogen sulfate-based ionic liquids + 1-butanol) and of (hydrogen sulfate-based ionic liquids + 1-octanol). Finally, this atom-efficient catalyst-free transesterification reaction between hydrogen sulfate-based ILs and alcohol was then tested to provide a novel way to synthesize new ILs with various anion structures containing the alkyl sulfate group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radical anions of 1-bromo-4-nitrobenzene (p-BrC6H4NO2) are shown to be reactive in the room temperature ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, ([C(4)mPyrr][NTf2]), by means of voltammetric measurements. In particular, they are shown to react via a DISP type mechanism such that the electrolysis of p-BrC6H4NO2 occurs consuming between one and two electrons per reactant molecule, leading to the formation of the nitrobenzene radical anion and bromide ions. This behaviour is a stark contrast to that in conventional non-aqueous solvents such as acetonitrile, dimethyl sulfoxide or N,N-dimethylformamide, which suggests that the ionic solvent promotes the reactivity of the radical anion, probably via stabilisation of the charged products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solid-state polymorphism of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], has been investigated via low-temperature and high-pressure crystallisation experiments. The samples have been characterised by single-crystal X-ray diffraction, optical microscopy and Raman spectroscopy. The solid-state phase behaviour of the compound is confirmed and clarified with respect to previous phase diagrams. The structures of the previously reported gamma-form, which essentially exhibits a G'T cation conformation, as well as those of the elusive beta- and alpha-forms, are reported. Crystals of the beta-phase are twinned and the structure is heavily disordered; the cation conformation in this form is predominantly TT, though significant contributions from other less frequently encountered conformers are also observed at low temperature and high pressure. The cation conformation in the alpha-form is GT; the presence of the G'T conformer at 193 K in this phase can be eliminated on cooling to 100 K. Whilst X-ray structural data are overall in good agreement with previous interpretations based on Raman and NMR studies, they also reveal a more subtle interplay of intermolecular interactions, which give rise to a wider range of conformers than previously considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical reduction of benzoic acid in the presence and absence of hydrogen (H-2) has been investigated using a 10 mu m diameter platinum microelectrode in four different room temperature ionic liquids (RTILs), namely [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf] and [C(4)mim][BF4], versus Ag/Ag+. In all cases, reductive voltammetry is observed, and is suggested to occur via a CE mechanism in which dissociation of benzoic acid is followed by electron transfer to H+ ultimately forming adsorbed hydrogen. Furthermore, the adsorbed H atoms, formed from the reduction of benzoic acid, could be used to achieve the rapid hydrogenolysis of the organic compound (bis(benzyloxycarbonyl)-L-lysine) on the timescale of the voltammetric technique under moderate conditions (25 degrees C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liquid state structure of the ionic liquid, 1-ethyl-3-methylimidazolium acetate, and the solute/solvent structure of glucose dissolved in the ionic liquid at a 1: 6 molar ratio have been investigated at 323 K by molecular dynamics simulations and neutron diffraction experiments using H/D isotopically substituted materials. Interactions between hydrogen-bond donating cation sites and polar, directional hydrogen-bond accepting acetate anions are examined. Ion-ion radial distribution functions for the neat ionic liquid, calculated from both MD and derived from the empirical potential structure refinement model to the experimental data, show the alternating shell-structure of anions around the cation, as anticipated. Spatial probability distributions reveal the main anion-to-cation features as in-plane interactions of anions with imidazolium ring hydrogens and cation-cation planar stacking. Interestingly, the presence of the polarised hydrogen-bond acceptor anion leads to increased anion-anion tail-tail structuring within each anion shell, indicating the onset of hydrophobic regions within the anion regions of the liquid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Densities, rho, of aqueous solutions of the room temperature protic ionic liquid (PIL), pyrrolidinium nitrate are determined at the atmospheric pressure over the temperature range from (283.15 to 323.15) K and within the whole composition range. The molar isobaric heat capacities, C(p), and refractive index, n(D), of {PIL + water} binary system are measured at 298.15 K. The excess molar volumes V(E), excess molar isobaric heat capacities C(p)(E), and deviation from ideality of refractive index Delta(phi)n, of pyrrolidinium nitrate aqueous solutions were deduced from the experimental results as well as apparent molar volumes V(phi), partial molar volumes (V) over bar (m,i), and thermal expansion coefficients alpha(p). The V(E) values were found to be positive over the entire composition range at all temperatures studied therein, whereas deviations from ideality were negative for refractive index Delta(phi)n. The volumetric properties of binary mixtures containing water and four other protic ionic liquids, such as pyrrolidinium hydrogen sulfate, pyrrolidinium formiate, collidinium formate, and diisopropyl-ethylammonium formate were also determined at 298.15 K. Results have been then discussed in terms of molecular interactions and molecular structures in these binary mixtures. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drive towards cleaner industrial processes has led to the development of room temperature ionic liquids (RTIL) as environmentally friendly solvents. They comprise solely of ions which are liquid at room temperature and with over one million simple RTIL alone it is important to characterize their physical properties using minimal sample volumes. Here we present a dual Quartz Crystal Microbalance (QCM) which allows separate determination of viscosity and density using a total sample volume of only 240 mu L. Liquid traps were fabricated on the sensing area of one QCM using SU-8 10 polymer with a second QCM having a flat surface. Changes in the resonant frequencies were used to extract separate values for viscosity and density. Measurements of a range of pure RTIL with minimal water content have been made on five different trap designs. The best agreement with measurements from the larger volume techniques was obtained for trap widths of around 50 pm thus opening up the possibility of integration into lab-on-a-chip systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systematic experiments have been carried out on the thermal and rheological behaviour of the ionic liquid, 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl} imide, [C(4)mim][NTf2], and, for the first time, on the forced convective heat transfer of an ionic liquid under the laminar flow conditions. The results show that the thermal conductivity of the ionic liquid is similar to 0.13 W m(-1) K-1, which is almost independent of temperature between 25 and 40 degrees C. Rheological measurements show that the [C(4)mim][NTf2] liquid is a Newtonian fluid with its shear viscosity decreasing with increasing temperature according to the exponential law over a temperature range of 20-90 degrees C. The convective heat transfer experiments demonstrate that the thermal entrance length of the ionic liquid is very large due to its high viscosity and low thermal conductivity. The convective heat transfer coefficient is observed to be much lower than that of distilled water under the same conditions. The convective heat transfer data are also found to fit well to the convectional Shah's equation under the conditions of this work. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal conductivities of 11 ionic liquids were determined, over the temperature range from 293 K to 353 K, at atmospheric pressure, using an apparatus based on the transient hot-wire method. For each of the ionic liquids studied, the thermal conductivities were found to be between (0.1 and 0.2) W.m(-1).K-1, with a slight decrease observed on increasing temperature. The uncertainty is estimated to be less than +/- 0.002 W.m(-1).K-1. In all cases, a linear equation was found to give a good fit to the data. The effects of water content and chloride content on the thermal conductivities of some of the ionic liquids were investigated. In each case, the thermal conductivities of the water + ionic liquid and chloride + ionic liquid binary mixtures were found to be less than the weighted average of the pure component thermal conductivities. This effect was adequately modeled using the Jamieson correlation. Chloride contamination at typical postsynthesis levels was found to have no significant effect on the thermal conductivities of the ionic liquid studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterogeneous catalytic oxidation of a series of thioethers (2-thiomethylpyrimidine, 2-thiomethyl-4,6-dimethyl-pyrimidine, 2-thiobenzylpyrimidine, 2-thiobenzyl-4,6-dimethylpyrimidine, thioanisole, and n-heptyl methyl sulfide) was performed in ionic liquids by using MCM-41 and UVM-type mesoporous catalysts containing Ti, or Ti and Ge. A range of triflate, tetrafluoroborate, trifluoroacetate, lactate and bis(trifluoromethanesulfonyl)imide-based ionic liquids were used. The oxidations were carried out by using anhydrous hydrogen peroxide or the urea-hydrogen peroxide adduct and showed that ionic liquids are very effective solvents, achieving greater reactivity and selectivity than reactions performed in dioxane. The effects of halide and acid impurities on the reactions were also investigated. Recycling experiments on catalysts were carried out in order to evaluate Ti leaching and its effect on activity and selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in situ method of studying the structure of reactive ionic materials in the solid and liquid states by XAFS is described. These salts have novel catalytic and solvent properties, and the results show that their structure may be studied using transmission XAFS by utilizing pressed disks of BN, graphite, and LiF and is not affected by the sample matrix used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a seedless synthetic method of gold octahedral nanoparticles in an aqueous phase. Eight facets with {111} crystalline structures of octahedral nanoparticles could be formed in an aqueous medium when the gold salt was reduced by ascorbic acid at room temperature in the presence of cetyltrimethylammonium bromide as a shape-inducing agent, and hydrogen peroxide as a reaction promoter. The growth kinetics and surface crystalline structures were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined experimental-computational study on the CO absorption on 1-butyl-3-methylimidazolium hexafluophosphate, 1-ethyl-3-methylimidazolium bis[trifluoromethylsulfonyl]imide, and 1-butyl-3-methylimidazolium bis[trifluoromethylsulfonyl]imide ionic liquids is reported. The reported results allowed to infer a detailed nanoscopic vision of the absorption phenomena as a function of pressure and temperature. Absorption isotherms were measured at 318 and 338K for pressures up to 20MPa for ultrapure samples using a state-of-the-art magnetic suspension densimeter, for which measurement procedures are developed. A remarkable swelling effect upon CO absorption was observed for pressures higher than 10MPa, which was corrected using a method based on experimental volumetric data. The experimental data reported in this work are in good agreement with available literature isotherms. Soave-Redlich-Kwong and Peng-Robinson equations of state coupled with bi-parametric van der Waals mixing rule were used for successful correlations of experimental high pressure absorption data. Molecular dynamics results allowed to infer structural, energetic and dynamic properties of the studied CO+ionic liquids mixed fluids, showing the relevant role of the strength of anion-cation interactions on fluid volumetric properties and CO absorption. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports a comparative study on the performances of two bis[(trifluoromethyl)sulfonyl]imide-based protic (PIL) and aprotic (AIL) ionic liquids, namely, trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide ([HN][TFSI], PIL) and trimethyl-sulfonium bis[(trifluoromethyl) sulfonyl]imide ([S][TFSI], AIL), as mixtures with three molecular solvents: gamma butyrolactone (?-BL), propylene carbonate (PC), and acetonitrile (ACN) as electrolytes for supercapacitor applications. After an analysis of their transport properties as a function of temperature, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements were conducted at 25 and -30 C to investigate the performance of these mixtures as electrolytes for supercapacitors using activated carbon as the electrode material. Surprisingly, for each solvent investigated, no significant differences were observed between the electrolytes based on the PIL and AIL in their electrochemical performance due to the presence or the absence of the labile proton. Furthermore, good specific capacitances were observed in the case of ?-BL-based electrolytes even at low temperature. Capacitances up to 131 and 80 F·g are observed for the case of the [S][TFSI] + ?-BL mixture at 25 and -30 C, respectively. This latter result is very promising particularly for the formulation of new environmentally friendly electrolytes within energy storage systems even at low temperatures. © 2013 American Chemical Society.