616 resultados para Nonlinear portal frame dynamics
Resumo:
This manuscript describes how motor behaviour researchers who are not at the same time expert roboticists may implement an experimental apparatus, which has the ability to dictate torque fields around a single joint on one limb or single joints on multiple limbs without otherwise interfering with the inherent dynamics of those joints. Such an apparatus expands the exploratory potential of the researcher wherever experimental distinction of factors may necessitate independent control of torque fields around multiple limbs, or the shaping of torque fields of a given joint independently of its plane of motion, or its directional phase within that plane. The apparatus utilizes torque motors. The challenge with torque motors is that they impose added inertia on limbs and thus attenuate joint dynamics. We eliminated this attenuation by establishing an accurate mathematical model of the robotic device using the Box-Jenkins method, and cancelling out its dynamics by employing the inverse of the model as a compensating controller. A direct measure of the remnant inertial torque as experienced by the hand during a 50 s period of wrist oscillations that increased gradually in frequency from 1.0 to 3.8 Hz confirmed that the removal of the inertial effect of the motor was effectively complete.
Resumo:
Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.
Resumo:
We analyze the role played by system-environment correlations in the emergence of non-Markovian dynamics. By working within the framework developed in Breuer et al. [Phys. Rev. Lett. 103, 210401 (2009)], we unveil a fundamental connection between non-Markovian behavior and dynamics of system-environment correlations. We derive an upper bound to the rate of change of the distinguishability between different states of the system that explicitly depends on the establishment of correlations between system and environment. We illustrate our results using a fully solvable spin-chain model, which allows us to gain insight into the mechanisms triggering non-Markovian evolution. © 2012 American Physical Society.
Resumo:
The nonlinear dynamics of electron-acoustic localized structures in a collisionless and unmagnetized plasma consisting of “cool” inertial electrons, “hot” electrons having a kappa distribution, and stationary ions is studied. The inertialess hot electron distribution thus has a long-tailed suprathermal (non-Maxwellian) form. A dispersion relation is derived for linear electron-acoustic waves. They show a strong dependence of the charge screening mechanism on excess suprathermality (through ?). A nonlinear pseudopotential technique is employed to investigate the occurrence of stationary-profile solitary waves, focusing on how their characteristics depend on the spectral index ?, and the hot-to-cool electron temperature and density ratios. Only negative polarity solitary waves are found to exist, in a parameter region which becomes narrower as deviation from the Maxwellian (suprathermality) increases, while the soliton amplitude at fixed soliton speed increases. However, for a constant value of the true Mach number, the amplitude decreases for decreasing ?.
Resumo:
A Comment on the Letter by Gurudas Ganguli and Leonid Rudakov, Phys. Rev. Lett. 93 135001 (2004). The authors of the Letter offer a Reply.
Resumo:
Aiming to establish a rigorous link between macroscopic random motion (described e.g. by Langevin-type theories) and microscopic dynamics, we have undertaken a kinetic-theoretical study of the dynamics of a classical test-particle weakly coupled to a large heat-bath in thermal equilibrium. Both subsystems are subject to an external force field. From the (time-non-local) generalized master equation a Fokker-Planck-type equation follows as a "quasi-Markovian" approximation. The kinetic operator thus defined is shown to be ill-defined; in specific, it does not preserve the positivity of the test-particle distribution function f(x, v; t). Adopting an alternative approach, previously introduced for quantum open systems, is proposed to lead to a correct kinetic operator, which yields all the expected properties. A set of explicit expressions for the diffusion and drift coefficients are obtained, allowing for modelling macroscopic diffusion and dynamical friction phenomena, in terms of an external field and intrinsic physical parameters.
Resumo:
A brief review of the occurrence of amplitude modulated structures in space and laboratory plasmas is provided, followed by a theoretical analysis of the mechanism of carrier wave (self-) interaction, with respect to electrostatic plasma modes. A generic collisionless unmagnetized fluid model is employed. Both cold-(zero-temperature) and warm-(finite temperature) fluid descriptions are considered and compared. The weakly nonlinear oscillation regime is investigated by applying a multiple scale (reductive perturbation) technique and a Nonlinear Schrödinger Equation (NLSE) is obtained, describing the evolution of the slowly varying wave amplitude in time and space. The amplitude’s stability profile reveals the possibility of modulational instability to occur under the influence of external perturbations. The NLSE admits exact localized envelope (solitary wave) solutions of bright (pulses) or dark (holes, voids) type, whose characteristics depend on intrinsic plasma parameters. The role of perturbation obliqueness (with respect to the propagation direction), finite temperature and — possibly — defect (dust) concentration is explicitly considered. The relevance of this description with respect to known electron-ion (e-i) as well as dusty (complex) plasma modes is briefly discussed. © 2004 American Institute of Physics
Resumo:
Real plasmas are often caracterized by the presence of excess energetic particle populations, resulting in a long-tailed non-Maxwellian distribution. In Space plasma physics, this phenomenon is usually modelled via a kappa-type distribution. This presentation is dedicated to an investigation, from first principles, of the effect of superthermality on the characteristics of dusty plasma modes. We employ a kappa distribution function to model the superthermality of the background components (electrons and/or ions). Background superthermality is shown to modify the charge screening mechanism in dusty plasmas, thus affecting the linear dispersion laws of both low- and higher frequency DP modes substantially. Various experimentally observed effects may thus be interpreted as manifestations of superthermality. Focusing on the features of nonlinear excitations (solitons) as they occur in different dusty plasma modes, we investigate the role of superthermality in their propagation dynamics (existence laws, stability profile) and characteristics (geometry).
Resumo:
A new nonlinear theory for the perpendicular transport of charged particles is presented. This approach is based on an improved nonlinear treatment of field line random walk in combination with a generalized compound diffusion model. The generalized compound diffusion model is much more systematic and reliable, in comparison to previous theories. Furthermore, the new theory shows remarkably good agreement with test-particle simulations and heliospheric observations.
Resumo:
1. Recent proliferation of hybridisation in response to anthropogenic ecosystem change, coupled with increasing evidence of the importance of ancient hybridisation events in the formation of many species, has moved hybridisation to the forefront of evolutionary theory.
2. In spite of this, the mechanisms (e. g. differences in trophic ecology) by which hybrids co-exist with parental taxa are poorly understood. A unique hybrid zone exists in Irish freshwater systems, whereby hybrid offspring off two non-native cyprinid fishes often outnumber both parental species.
3. Using stable isotope and gut content analyses, we determined the trophic interactions between sympatric populations of roach (Rutilus rutilus), bream (Abramis brama) and their hybrid in lacustrine habitats.
4. The diet of all three groups displayed little variation across the study systems, and dietary overlap was observed between both parental species and hybrids. Hybrids displayed diet, niche breadth and trophic position that were intermediate between the two parental species while also exhibiting greater flexibility in diet across systems.