567 resultados para Johnston, Jerome
Resumo:
Background-Asthma, post-nasal drip syndrome (PNDS), and gastrooesophageal reflux (GOR) account for many cases of chronic non-productive cough (CNPC). Each may simultaneously contribute to cough even when clinically silent, and failure to recognise their contribution may lead to unsuccessful treatment.
Methods—Patients (all lifetime non-smokers with normal chest radiographs and spirometric measurements) referred with CNPC persisting for more than three weeks as their sole respiratory symptom underwent histamine challenge, home peak flow measurements, ear, nose and throat (ENT) examination, sinus CT scanning, and 24 hour oesophageal pH monitoring. Treatment was prescribed on the basis of diagnoses informed by investigation results.
RESULTS—Forty three patients (29 women) of mean age 47.5 years (range 18-77) and mean cough duration 67 months (range 2-240) were evaluated. On the basis of a successful response to treatment, a cause for the cough was identified in 35 patients (82%) as follows: cough variant asthma (CVA) (10 cases), PNDS (9 cases), GOR (8cases), and dual aetiologies (8 cases). Histamine challenge correctly predicted CVA in 15 of 17 (88%) positive tests. ENT examination and sinus CT scans each had low positive predictive values for PNDS (10 of 16 (63%) and 12 of 18 (67%) positive cases, respectively), suggesting that upper airways disease frequently co-exists but does not always contribute to cough. When negative, histamine challenge and 24 hour oesophageal pH monitoring effectively ruled out CVA and GOR, respectively, as a cause for cough.
CONCLUSION—This comprehensive approach aids the accurate direction of treatment and, while CVA, PNDS and GOR remain the most important causes of CNPC to consider, a group with no identifiable aetiology remains.
Resumo:
Ubiquitination is a reversible posttranslational modification that is essential for cell cycle control, and it is becoming increasingly clear that the removal of ubiquitin from proteins by deubiquitinating enzymes (DUB) is equally important. In this study, we have identified high levels of the DUB USP17 in several tumor-derived cell lines and primary lung, colon, esophagus, and cervix tumor biopsies. We also report that USP17 is tightly regulated during the cell cycle in all the cells examined, being abundantly evident in G1 and absent in S phase. Moreover, regulated USP17 expression was necessary for cell cycle progression because its depletion significantly impaired G1-S transition and blocked cell proliferation. Previously, we have shown that USP17 regulates the intracellular translocation and activation of the GTPase Ras by controlling Ras-converting enzyme 1 (RCE1) activation. RCE1 also regulates the processing of other proteins with a CAAX motif, including Rho family GTPases. We now show that USP17 depletion blocks Ras and RhoA localization and activation. Moreover, our results confirm that USP17-depleted cells have constitutively elevated levels of the cyclin-dependent kinase inhibitors p21cip1 and p27kip1, known downstream targets of Ras and RhoA signaling. These observations clearly show that USP17 is tightly regulated during cell division and that its expression is necessary to coordinate cell cycle progression, and thus, it may be considered a promising novel cancer therapeutic target. Cancer Res; 70(8); 3329–39. ©2010 AACR.
Resumo:
Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.
Resumo:
The proto-oncogenic Ras isoforms (H, N, and K) have a C-terminal CAAX motif and undergo the same post-translational processing steps, although they traffic to the plasma membrane through different routes. Previously, we have shown that overexpression of the deubiquitinating enzyme USP17 inhibits H-Ras localization to the plasma membrane. Now we report that whereas H-Ras and N-Ras were unable to localize to the plasma membrane in the presence of USP17, K-Ras4b localization was unaffected. EGF stimulation was unable to induce N-Ras membrane localization in USP17-expressing cells. In addition, N-Ras activity and downstream signaling through the MAPK MEK/ERK and PI3K/JNK pathways were blunted. However, we still detected abundant N-Ras localization at the ER and Golgi in USP17-expressing cells. Collectively, our data showed that the deubiquitinating enzyme USP17 blocks EGF-induced N-Ras membrane trafficking and activation, but left K-Ras unaffected.