493 resultados para Astronomy and astrophysics
Resumo:
SN 2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SN Ia), and a member of the distinct SN 2002cx-like class of SNe Ia. Its light curves are similar to the prototypical SN 2002cx, but are slightly broader and have a later rise to maximum in g. SN 2009ku is brighter (similar to 0.6 mag) than other SN 2002cx-like objects, peaking at M-V = -18.4 mag, which is still significantly fainter than typical SNe Ia. SN 2009ku, which had an ejecta velocity of similar to 2000 km s(-1) at 18 days after maximum brightness, is spectroscopically most similar to SN 2008ha, which also had extremely low-velocity ejecta. However, SN 2008ha had an exceedingly low luminosity, peaking at M-V = -14.2 mag, similar to 4 mag fainter than SN 2009ku. The contrast of high luminosity and low ejecta velocity for SN 2009ku is contrary to an emerging trend seen for the SN 2002cx class. SN 2009ku is a counterexample of a previously held belief that the class was more homogeneous than typical SNe Ia, indicating that the class has a diverse progenitor population and/or complicated explosion physics. As the first example of a member of this class of objects from the new generation of transient surveys, SN 2009ku is an indication of the potential for these surveys to find rare and interesting objects.
Resumo:
Aims. The aim of this paper is to discuss the nature of two type Ic supernovae SN 2007bg and SN 2007bi and their host galaxies. Both supernovae were discovered in wide-field, non-targeted surveys and are found to be associated with sub-luminous blue dwarf galaxies identified in SDSS images.
Resumo:
Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova (SN) has converged to 8 +/- 1 M-circle dot from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc SNe arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic SNe are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above similar to 20 M-circle dot may collapse quietly to black holes and that the explosions remain undetected. The recent discovery of a class of ultrabright type H SNe and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggest some very massive stars do produce highly energetic explosions. The physical mechanism is under debate, and these SNe pose a challenge to stellar evolutionary theory.
Resumo:
The Rapid Oscillations in the Solar Atmosphere instrument reveals solar atmospheric fluctuations at high frequencies. Spectra of variations of the G-band intensity (IG ) and Ca II K-line intensity (IK ) show correlated fluctuations above white noise to frequencies beyond 300 mHz and 50 mHz, respectively. The noise-corrected G-band spectrum for f = 28-326 mHz shows a power law with exponent -1.21 ± 0.02, consistent with the presence of turbulent motions. G-band spectral power in the 25-100 mHz ("UHF") range is concentrated at the locations of magnetic bright points in the intergranular lanes and is highly intermittent in time. The intermittence of the UHF G-band fluctuations, shown by a positive kurtosis ?, also suggests turbulence. Combining values of IG , IK , UHF power, and ? reveals two distinct states of the solar atmosphere. State 1, including almost all the data, is characterized by low IG , IK , and UHF power and ? ˜ 6. State 2, including only a very small fraction of the data, is characterized by high IG , IK , and UHF power and ? ˜ 3. Superposed epoch analysis shows that the UHF power peaks simultaneously with spatio-temporal IG maxima in either state. For State 1, IK shows 3.5 minute chromospheric oscillations with maxima occurring 21 s after IG maxima implying a 150-210 km effective height difference. However, for State 2 the IK and IG maxima are simultaneous; in this highly magnetized environment sites of G-band and K-line emission may be spatially close together.
Resumo:
We investigate if the super-saturation phenomenon observed at X-ray wavelengths for the corona exists in the chromosphere for rapidly rotating late-type stars. Moderate resolution optical spectra of fast-rotating EUV- and X-ray-selected late-type stars were obtained. Stars in a Per were observed in the northern hemisphere with the Isaac Newton 2.5 m telescope and Intermediate Dispersion Spectrograph. Selected objects from IC 2391 and IC 2602 were observed in the southern hemisphere with the Blanco 4 m telescope and R-C spectrograph at CTIO. Ca II H and K fluxes were measured for all stars in our sample. We find the saturation level for Ca II K at log (L CaK/L bol) = -4.08. The Ca II K flux does not show a decrease as a function of increased rotational velocity or smaller Rossby number as observed in the X-ray. This lack of "super-saturation" supports the idea of coronal stripping as the cause of saturation and super-saturation in stellar chromospheres and coronae, but the detailed underlying mechanism is still under investigation.
Resumo:
We present here evidence for the observation of the magnetohydrodynamic (MHD) sausage modes in magnetic pores in the solar photosphere. Further evidence for the omnipresent nature of acoustic global modes is also found. The empirical decomposition method of wave analysis is used to identify the oscillations detected through a 4170 Å "blue continuum" filter observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument. Out of phase, periodic behavior in pore size and intensity is used as an indicator of the presence of magnetoacoustic sausage oscillations. Multiple signatures of the magnetoacoustic sausage mode are found in a number of pores. The periods range from as short as 30 s up to 450 s. A number of the magnetoacoustic sausage mode oscillations found have periods of 3 and 5 minutes, similar to the acoustic global modes of the solar interior. It is proposed that these global oscillations could be the driver of the sausage-type magnetoacoustic MHD wave modes in pores.
Resumo:
Context. Type II-linear supernovae are thought to arise from progenitors that have lost most of their H envelope by the time of the explosion, and they are poorly understood because they are only occasionally discovered. It is possible that they are intrinsically rare, but selection effects due to their rapid luminosity evolution may also play an important role in limiting the number of detections. In this context, the discovery of a subluminous type II-linear event is even more interesting.
Resumo:
We report the identification of a source coincident with the position of the nearby Type II-P supernova (SN) 2008bk in high-quality optical and near-infrared preexplosion images from the ESO Very Large Telescope (VLT). The SN position in the optical and near-infrared preexplosion images is identified to within about +/- 70 and +/- 40 mas, respectively, using postexplosion-band images obtained with the NAOS CONICA adaptive optics system K-s on the VLT. The preexplosion source detected in four different bands is precisely coincident with SN 2008bk and is consistent with being dominated by a single point source. We determine the nature of the point source using the STARS stellar evolutionary models and find that its colors and luminosity are consistent with the source being a red supergiant progenitor of SN 2008bk with an initial mass of 8.5 +/- 1.0 M-circle dot.
Resumo:
A source coincident with the position of the type IIb supernova (SN) 2008ax is identified in pre-explosion Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observations in three optical filters. We identify and constrain two possible progenitor systems: (i) a single massive star that lost most of its hydrogen envelope through radiatively driven mass-loss processes, prior to exploding as a helium-rich Wolf-Rayet star with a residual hydrogen envelope, and (ii) an interacting binary in a low-mass cluster producing a stripped progenitor. Late time, high-resolution observations along with detailed modelling of the SN will be required to reveal the true nature of this progenitor star.
Resumo:
We report our attempts to locate the progenitor of the peculiar Type Ic SN 2007gr in Hubble Space Telescope (HST) preexplosion images of the host galaxy, NGC 1058. Aligning adaptive optics Altair/NIRI imaging of SN 2007gr from the Gemini ( North) Telescope with the preexplosion HST WFPC2 images, we identify the supernova (SN) position on the HST frames with an accuracy of 20 mas. Although nothing is detected at the SN position, we show that it lies on the edge of a bright source 134 +/- 23 mas (6.9 pc) from its nominal center. On the basis of its luminosity, we suggest that this object is possibly an unresolved, compact, and coeval cluster and that the SN progenitor was a cluster member, although we note that model profile fitting favors a single bright star. We find two solutions for the age of this assumed cluster: 7 -/+ 0.5 Myr and 20 - 30 Myr, with turnoff masses of 28 +/- M-circle dot and 12 - 9 M-circle dot, respectively. Preexplosion ground-based K- band images marginally favor the younger cluster 4 age/higher turnoff mass. Assuming the SN progenitor was a cluster member, the turnoff mass provides the best estimate for its initial mass. More detailed observations, after the SN has faded, should determine whether the progenitor was indeed part of a cluster and, if so, allow an age estimate to within similar to 2 Myr, thereby favoring either a high-mass single star or lower-mass interacting binary progenitor.
Resumo:
We calculate the predicted UBVRIJHK absolute magnitudes for models of supernova progenitors and apply the result to the case of supernova 2005cs. We agree with previous results that the initial mass of the star was low, around 6 to 8 M-circle dot. However, such stars are thought to go through a second dredge-up to become asymptotic giant branch (AGB) stars. We show that had this occurred to the progenitor of 2005cs it would have been observed in JHK pre-explosion images. The progenitor was not detected in these bands and therefore we conclude that it was not an AGB star. Furthermore, if some AGB stars do produce supernovae they will have a clear signature in pre-explosion near-infrared images. Electron-capture supernovae are thought to occur in AGB stars, hence the implication is that 2005cs was not an electron-capture supernova but was the collapse of an iron core.
Resumo:
The POINT-AGAPE collaboration is carrying out a search for gravitational microlensing toward M31 to reveal galactic dark matter in the form of MACHOs (Massive Astrophysical Compact Halo Objects) in the halos of the Milky Way and M31. A high-threshold analysis of 3 years of data yields 6 bright, short- duration microlensing events, which are confronted to a simulation of the observations and the analysis. The observed signal is much larger than expected from self lensing alone and we conclude, at the 95% confidence level, that at least 20% of the halo mass in the direction of M31 must be in the form of MACHOs if their average mass lies in the range 0.5-1 M-circle dot. This lower bound drops to 8% for MACHOs with masses similar to 0.01 M-circle dot. In addition, we discuss a likely binary microlensing candidate with caustic crossing. Its location, some 32' away from the centre of M31, supports our conclusion that we are detecting a MACHO signal in the direction of M31.
Resumo:
The progenitor of SN 2005cs, in the galaxy M51, is identified in pre-explosion Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) imaging. Differential astrometry, with post-explosion ACS High Resolution Channel (HRC) F555W images, permitted the identification of the progenitor with an accuracy of 0.006 arcsec. The progenitor was detected in the F814W pre-explosion image with I = 23.3 +/- 0.2, but was below the detection thresholds of the F435W and F555W images, with B
Resumo:
The chemical composition of two stars in WLM has been determined from high-quality Ultraviolet-Visual Echelle Spectrograph (UVES) data obtained at the VLT-UT2. The model atmospheres analysis shows that they have the same metallicity, [Fe/H] = - 0.38 +/- 0.20 (+/- 0.29). Reliable magnesium abundances are determined from several lines of two ionization states in both stars resulting in [Mg/Fe] = - 0.24 +/- 0.16 (+/- 0.28). This result suggests that the [alpha(Mg)/Fe] ratio in WLM may be suppressed relative to solar abundances ( also supported by differential abundances relative to similar stars in NGC 6822 and the Small Magellanic Cloud [SMC]). The absolute Mg abundance, [Mg/H] = -0.62, is high relative to what is expected from the nebulae though, where two independent spectroscopic analyses of the H II regions in WLM yield [O/H] = - 0.89. Intriguingly, the oxygen abundance determined from the O I lambda6158 feature in one WLM star is [O/H] = - 0.21 +/- 0.10 (+/- 0.05), corresponding to 5 times higher than the nebular oxygen abundance. This is the first time that a significant difference between stellar and nebular oxygen abundances has been found, and currently, there is no simple explanation for this difference. The two stars are massive supergiants with distances that clearly place them in WLM. They are young ( less than or equal to 10 Myr) and should have a similar composition to the ISM. Additionally, differential abundances suggest that the O/Fe ratio in the WLM star is consistent with similar stars in NGC 6822 and the SMC, galaxies where the average stellar oxygen abundances are in excellent agreement with the nebular results. If the stellar abundances reflect the true composition of WLM, then this galaxy lies well above the metallicity-luminosity relationship for dwarf irregular galaxies. It also suggests that WLM is more chemically evolved than currently interpreted from its color-magnitude diagram. The similarities between the stars in WLM and NGC 6822 suggest that these two galaxies may have had similar star formation histories.
Resumo:
We have carried out a survey of the Andromeda galaxy for unresolved microlensing (pixel lensing). We present a subset of four short timescale, high signal-to-noise microlensing candidates found by imposing severe selection criteria: the source flux variation exceeds the flux of an R = 21 magnitude star and the full width at half maximum timescale is less than 25 days. Remarkably, in three out of four cases, we have been able to measure or strongly constrain the Einstein crossing time of the event. One event, which lies projected on the M 31 bulge, is almost certainly due to a stellar lens in the bulge of M 31. The other three candidates can be explained either by stars in M 31 and M 32 or by MACHOs.