382 resultados para 11-CH-01
Resumo:
This paper explores the theme of exhibiting architectural research through a particular example, the development of the Irish pavilion for the 14th architectural biennale, Venice 2014. Responding to Rem Koolhaas’s call to investigate the international absorption of modernity, the Irish pavilion became a research project that engaged with the development of the architectures of infrastructure in Ireland in the twentieth and twenty-first centuries. Central to this proposition was that infrastructure is simultaneously a technological and cultural construct, one that for Ireland occupied a critical position in the building of a new, independent post-colonial nation state, after 1921.
Presupposing infrastructure as consisting of both visible and invisible networks, the idea of a matrix become a central conceptual and visual tool in the curatorial and design process for the exhibition and pavilion. To begin with this was a two-dimensional grid used to identify and order what became described as a series of ten ‘infrastructural episodes’. These were determined chronologically across the decades between 1914 and 2014 and their spatial manifestations articulated in terms of scale: micro, meso and macro. At this point ten academics were approached as researchers. Their purpose was twofold, to establish the broader narratives around which the infrastructures developed and to scrutinise relevant archives for compelling visual material. Defining the meso scale as that of the building, the media unearthed was further filtered and edited according to a range of categories – filmic/image, territory, building detail, and model – which sought to communicate the relationship between the pieces of architecture and the larger systems to which they connect. New drawings realised by the design team further iterated these relationships, filling in gaps in the narrative by providing composite, strategic or detailed drawings.
Conceived as an open-ended and extendable matrix, the pavilion was influenced by a series of academic writings, curatorial practices, artworks and other installations including: Frederick Kiesler’s City of Space (1925), Eduardo Persico and Marcello Nizzoli’s Medaglio d’Oro room (1934), Sol Le Witt’s Incomplete Open Cubes (1974) and Rosalind Krauss’s seminal text ‘Grids’ (1979). A modular frame whose structural bays would each hold and present an ‘episode’, the pavilion became both a visual analogue of the unseen networks embodying infrastructural systems and a reflection on the predominance of framed structures within the buildings exhibited. Sharing the aspiration of adaptability of many of these schemes, its white-painted timber components are connected by easily-dismantled steel fixings. These and its modularity allow the structure to be both taken down and re-erected subsequently in different iterations. The pavilion itself is, therefore, imagined as essentially provisional and – as with infrastructure – as having no fixed form. Presenting archives and other material over time, the transparent nature of the space allowed these to overlap visually conveying the nested nature of infrastructural production. Pursuing a means to evoke the qualities of infrastructural space while conveying a historical narrative, the exhibition’s termination in the present is designed to provoke in the visitor, a perceptual extension of the matrix to engage with the future.
Resumo:
A comprehensive continuum damage mechanics model [1] had been developed to capture the detailed
behaviour of a composite structure under a crushing load. This paper explores some of the difficulties
encountered in the implementation of this model and their mitigation. The use of reduced integration
element and a strain softening model both negatively affect the accuracy and stability of the
simulation. Damage localisation effects demanded an accurate measure of characteristic length. A
robust algorithm for determining the characteristic length was implemented. Testing showed that this
algorithm produced marked improvements over the use of the default characteristic length provided
by Abaqus. Zero-energy or hourglass modes, in reduced integration elements, led to reduced
resistance to bending. This was compounded by the strain softening model, which led to the formation
of elements with little resistance to deformation that could invert if left unchecked. It was shown,
through benchmark testing, that by deleting elements with excess distortions and controlling the mesh
using inbuilt distortion/hourglass controls, these issues can be alleviated. These techniques
contributed significantly to the viability and usability of the damage model.