387 resultados para antigen delivery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: RALA is a novel 30 mer bioinspired amphipathic peptide that is showing promise for gene delivery. Here, we used RALA to deliver the FK506-binding protein like – FKBPL gene (pFKBPL) – a novel member of the immunophilin protein family. FKBPL is a secreted protein, with overexpression shown to inhibit angiogenesis, tumor growth and stemness, through a variety of intra- and extracellular signaling mechanisms. We also elucidated proangiogenic activity and stemness after utilizing RALA to deliver siRNA (siFKBPL). Materials & methods: The RALA/pFKBPL and RALA/siFKBPL nanoparticles were characterized in terms of size, charge, stability and toxicity. Overexpression and knockdown of FKBPL was assessed in vitro and in vivo. Results: RALA delivered both pFKBPL and siFKBPL with less cytotoxicity than commercially available counterparts. In vivo, RALA/pFKBPL delivery retarded tumor growth, and prolonged survival with an associated decrease in angiogenesis, while RALA/siFKBPL had no effect on tumor growth rate or survival, but resulted in an increase in angiogenesis and stemness. Conclusion: RALA is an effective delivery system for both FKBPL DNA and RNAi and highlights an alternative therapeutic approach to harnessing FKBPL's antiangiogenic and antistemness activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research project analysed the role and effectiveness of LIFT via a multi-method study which included semi-structured interviews with policy elites and users, as well as case studies and an exploratory analysis of the financial characteristics of three LIFT Companies. While the team felt that it was able to identify key aspects relating to the advantages and drawbacks surrounding LIFT, some aspects relating to the representativeness of the study was adversely affected by a reluctance of PCTs to participate in the case study analysis and commercial confidentiality restrictions. The study was nonetheless able to identify important issues in relation to the funding and procurement of primary care premises and services.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytokine secretion and degranulation represent key components of CD8(+) T-cell cytotoxicity. While transcriptional blockade of IFN-γ and inhibition of degranulation by TGF-β are well established, we wondered whether TGF-β could also induce immune-regulatory miRNAs in human CD8(+) T cells. We used miRNA microarrays and high-throughput sequencing in combination with qRT-PCR and found that TGF-β promotes expression of the miR-23a cluster in human CD8(+) T cells. Likewise, TGF-β up-regulated expression of the cluster in CD8(+) T cells from wild-type mice, but not in cells from mice with tissue-specific expression of a dominant-negative TGF-β type II receptor. Reporter gene assays including site mutations confirmed that miR-23a specifically targets the 3'UTR of CD107a/LAMP1 mRNA, whereas the further miRNAs expressed in this cluster-namely, miR-27a and -24-target the 3'UTR of IFN-γ mRNA. Upon modulation of the miR-23a cluster by the respective miRNA antagomirs and mimics, we observed significant changes in IFN-γ expression, but only slight effects on CD107a/LAMP1 expression. Still, overexpression of the cluster attenuated the cytotoxic activity of antigen-specific CD8(+) T cells. These functional data thus reveal that the miR-23a cluster not only is induced by TGF-β, but also exerts a suppressive effect on CD8(+) T-cell effector functions, even in the absence of TGF-β signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovarian cancer is very treatable in the early stages of disease; however, it is usually detected in the later stages, at which time, treatment is no longer as effective. If discovered early (Stage I), there is a 90% chance of five-year survival. Therefore, it is imperative that early-stage biomarkers are identified to enhance the early detection of ovarian cancer. Cancer-testis antigens (CTAs), such as Per ARNT SIM (PAS) domain containing 1 (PASD1), are unique in that their expression is restricted to immunologically restricted sites, such as the testis and placenta, which do not express MHC class I, and cancer, making them ideally positioned to act as targets for immunotherapy as well as potential biomarkers for cancer detection where expressed. We examined the expression of PASD1a and b in a number of cell lines, as well as eight healthy ovary samples, eight normal adjacent ovarian tissues, and 191 ovarian cancer tissues, which were predominantly stage I (n = 164) and stage II (n = 14) disease. We found that despite the positive staining of skin cancer, only one stage Ic ovarian cancer patient tissue expressed PASD1a and b at detectable levels. This may reflect the predominantly stage I ovarian cancer samples examined. To examine the restriction of PASD1 expression, we examined endometrial tissue arrays and found no expression in 30 malignant tumor tissues, 23 cases of hyperplasia, or 16 normal endometrial tissues. Our study suggests that the search for a single cancer-testes antigen/biomarker that can detect early ovarian cancer must continue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines issues of capacity, delivery and quality in relation to the Planning Bill. It is one of four papers and follows a common format highlighting the key issues arising in the Bill; summarising the findings of the public consultation and the Government’s response; reviewing comparable arrangements in comparable jurisdictions and highlighting potential contentious issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, beingsignificantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter examines key concepts with respect to cancer gene therapy and the current issues with respect to non-viral delivery. The biological and molecular barriers that need to be overcome before effective non-viral delivery systems can be appropriately designed for oncology applications are highlighted and ways to overcome these are discussed. Strategies developed to evade the immune response are also described and targeted gene delivery is examined with the most effective strategies highlighted. Finally, this chapter proposes a new way forward based on a growing body of evidence that supports a multifunctional delivery approach involving the creation of vectors, with a unique molecular architecture designed using a bottom-up approach.