370 resultados para Rodolfo Walsh
Resumo:
BACKGROUND: Evidence suggests that genetic factors may influence both schizophrenia (Scz) and its clinical presentation. In recent years, genome-wide association studies (GWAS) have demonstrated considerable success in identifying risk loci. Detection of "modifier loci" has the potential to further elucidate underlying disease processes.
METHODS: We performed GWAS of empirically derived positive and negative symptom scales in Irish cases from multiply affected pedigrees and a larger, independent case-control sample, subsequently combining these into a large Irish meta-analysis. In addition to single-SNP associations, we considered gene-based and pathway analyses to better capture convergent genetic effects, and to facilitate biological interpretation of these findings. Replication and testing of aggregate genetic effects was conducted using an independent European-American sample.
RESULTS: Though no single marker met the genome-wide significance threshold, genes and ontologies/pathways were significantly associated with negative and positive symptoms; notably, NKAIN2 and NRG1, respectively. We observed limited overlap in ontologies/pathways associated with different symptom profiles, with immune-related categories over-represented for negative symptoms, and addiction-related categories for positive symptoms. Replication analyses suggested that genes associated with clinical presentation are generalizable to non-Irish samples.
CONCLUSIONS: These findings strongly support the hypothesis that modifier loci contribute to the etiology of distinct Scz symptom profiles. The finding that previously implicated "risk loci" actually influence particular symptom dimensions has the potential to better delineate the roles of these genes in Scz etiology. Furthermore, the over-representation of distinct gene ontologies/pathways across symptom profiles suggests that the clinical heterogeneity of Scz is due in part to complex and diverse genetic factors.
Resumo:
This article explores the factors that contribute to patient safety incidents. It highlights the importance of human factors in influencing the clinician's performance. Rather than focusing on clinical skills, the article explores the range of non-technical skills which are seen to each contribute to patient safety, including: communication, teamworking, leadership, active followership, situational awareness, decision-making, assertiveness, and workload management. It asks how cognitive processes can influence safe decision-making.
Resumo:
We report the first detection of a gap and a ring in dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array. The gap and ring are located at 25 and 41 AU from the central star, respectively, and are associated with the CO snowline at ~ 30AU. The gap width and depth are 15AU at the maximum and 23% at the minimum, respectively, regarding that the observations are limited to an angular resolution of ~ 15AU. In addition, we detect a decrement in CO line emission down to ~ 10AU, indicating freeze-out of gas-phase CO onto grain surfaces and possible subsequent surface reactions to form larger molecules. According to theoretical studies, the gap could be caused by gravitational interaction between the disk gas and a planet with a mass less than super-Neptune (2 Neptune mass), or result from destruction of large dust aggregates due to the sintering of CO ice.
Resumo:
(abreviated) We aim to study the inner-wind structure (R<250 Rstar) of the well-known red supergiant VY CMa. We analyse high spatial resolution (~0".24x0".13) ALMA Science Verification (SV) data in band 7 in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of ~50 degrees measured from north to east. However, this picture can not capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profiles is significantly lower than the average wind terminal velocity, and much slower than some of the fastest mass ejections, signalling a wide range of characteristic speeds for the mass loss. Gaseous NaCl is detected far beyond the main dust condensation region. Realising the refractory nature of this metal halide, this hints at a chemical process preventing all NaCl from condensing onto dust grains. We show that in the case of the ratio of the surface binding temperature to the grain temperature being ~50, only some 10% of NaCl remains in gaseous form, while for lower values of this ratio thermal desorption efficiently evaporates NaCl. Photodesorption by stellar photons seems not to be a viable explanation for the detection of gaseous NaCl at 220 Rstar from the central star, and instead, we propose shock-induced sputtering driven by localized mass ejection events as alternative.
Resumo:
Using both dynamical and chemical modelling, we derive an accurate abundance profile for the molecule SiO in the stellar wind of R Dor, an O-rich AGB star. SiO plays a key role in the dust formation process in O-rich AGB stars. This method will be applied to additional molecules, with the aim to achieve a detailed overview of the molecular abundance pattern in the wind of R Dor.
Resumo:
The first detection of gas-phase methanol in a protoplanetary disk (TW Hya) is presented. In addition to being one of the largest molecules detected in disks to date, methanol is also the first disk organic molecule with an unambiguous ice chemistry origin. The stacked methanol emission, as observed with the Atacama Large Millimeter/submillimeter Array, is spectrally resolved and detected across six velocity channels (>3σ), reaching a peak signal-to-noise of 5.5σ, with the kinematic pattern expected for TW Hya. Using an appropriate disk model, a fractional abundance of 3 x 10-12 – 4 x 10-11 (with respect to H2) reproduces the stacked line profile and channel maps, with the favored abundance dependent upon the assumed vertical location (midplane versus molecular layer). The peak emission is offset from the source position, suggesting that the methanol emission has a ring-like morphology: the analysis here suggests it peaks at ≈30 au, reaching a column density ≈3–6 x 1012 cm−2. In the case of TW Hya, the larger (up to millimeter-sized) grains, residing in the inner 50 au, may thus host the bulk of the disk ice reservoir. The successful detection of cold gas-phase methanol in a protoplanetary disk implies that the products of ice chemistry can be explored in disks, opening a window into studying complex organic chemistry during planetary system formation.
Resumo:
Background
Ventilator-acquired pneumonia (VAP) remains a significant problem within intensive care units (ICUs). There is a growing recognition of the impact of critical-illness-induced immunoparesis on the pathogenesis of VAP, but the mechanisms remain incompletely understood. We hypothesised that, because of limitations in their routine detection, Mycoplasmataceae are more prevalent among patients with VAP than previously recognised, and that these organisms potentially impair immune cell function.
Methods and setting
159 patients were recruited from 12 UK ICUs. All patients had suspected VAP and underwent bronchoscopy and bronchoalveolar lavage (BAL). VAP was defined as growth of organisms at >104 colony forming units per ml of BAL fluid on conventional culture. Samples were tested for Mycoplasmataceae (Mycoplasma and Ureaplasma spp.) by PCR, and positive samples underwent sequencing for speciation. 36 healthy donors underwent BAL for comparison. Additionally, healthy donor monocytes and macrophages were exposed to Mycoplasma salivarium and their ability to respond to lipopolysaccharide and undertake phagocytosis was assessed.
Results
Mycoplasmataceaewerefoundin49%(95%CI 33% to 65%) of patients with VAP, compared with 14% (95% CI 9% to 25%) of patients without VAP. Patients with sterile BAL fluid had a similar prevalence to healthy donor BAL fluid (10% (95% CI 4% to 20%) vs 8% (95% CI 2% to 22%)). The most common organism identified was M. salivarium. Blood monocytes from healthy volunteers incubated with M. salivarium displayed an impaired TNF-α response to lipopolysaccharide ( p=0.0003), as did monocyte-derived macrophages (MDMs) (p=0.024). MDM exposed to M. salivarium demonstrated impaired phagocytosis ( p=0.005).
Discussion and conclusions
This study demonstrates a high prevalence of Mycoplasmataceae among patients with VAP, with a markedly lower prevalence among patients with suspected VAP in whom subsequent cultures refuted the diagnosis. The most common organism found, M. salivarium, is able to alter the functions of key immune cells. Mycoplasmataceae may contribute to VAP pathogenesis.