384 resultados para LIGHTWEIGHT AGGREGATE CONCRETE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper descirbes a simple test measuring the sorptivity (a measure of the absorption property if concrete) and the air and water permeability of concrete on site. Using this test, the decay of pressure is monitired for the air permeability test.whereas water penetrating into the concrete at a constant pressure of 0.01 bar and 1.5 bar are recorded for the sorptivity and the water permeability tests respectively. These tests are essentially non-destructive in nature and a skilled operator is not needed. It is possible to carry out a number of tests quickly and efficiently on site without prior planning. It has been found that statistically satisfactory results can be obtained from a mean of three tests. As the flow lines are largely concentrated within 40 mm from the surface, reasonably reliable results can be obtained by drying the surface even if the surface under test is initially wet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chloride is the most severe form of deterioration experienced by concrete and one of the principal sources of chlorides is sea water. However, the presence of sulfates in seawater will influence the movement of chloride ions and vice versa. This interaction is not well understood and current codes of practice provide no guidelines for such dual exposure.
An investigation to monitor combined effect of the ingress of chlorides and sulfates during a realistic 12 month wetting and drying exposure regime to simulate conditions in which multiple mode transport mechanisms are active was conducted on a variety of binders (PC, PFA and GGBS). Penetration was evaluated using water and acid soluble chloride profiles and sulfate profiles.
It was found that the nature of the exposure provided multiple modes of transport within the concrete, thus creating a complex pattern of distribution of ions. The presence of sulfates decreased the penetration of chlorides in the PC system at all ages relative to a chloride only control. The matrices containing PFA and GGBS also showed an initial decrease in chloride penetration. However, after six months the presence of sulfates then increased chloride penetration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Girli Concrete is a cross disciplinary funded research project based in the University of Ulster involving a textile designer/ researcher, an architect/ academic and a concrete manufacturing firm.
Girli Concrete brings together concrete and textile technologies, testing ideas of
concrete as textile and textile as structure. It challenges the perception of textiles as only the ‘dressing’ to structure and instead integrates textile technologies into the products of building products. Girli Concrete uses ‘low tech’ methods of wet and dry concrete casting in combination with ‘high tech’ textile methods using laser cutting, etching, flocking and digital printing. Whilst we have been inspired by recent print and imprint techniques in architectural cladding, Girli Concrete is generated within the depth of the concrete’s cement paste “skin”, bringing the trades and crafts of both industries together with innovative results.
Architecture and Textiles have an odd, somewhat unresolved relationship. Confined to a subservient role in architecture, textiles exist chiefly within the categories of soft furnishings and interior design. Girli Concrete aims to mainstream tactility in the production of built environment products, raising the human and environmental interface to the same specification level as the technical. This paper will chart:
The background and wider theoretical concerns to the project.
The development of Girli Concrete, highlighting the areas where craft becomes
art and art becomes science in the combination of textile and concrete
technologies.
The challenges of identifying funding to support such combination technologies,
working methods and philosophies.
The challenges of generating and sustaining practice within an academic
research environment
The outcomes to date

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While on site measurement of air permeability provides a useful approach for assessing the likely long term durability of concrete structures, no existing test method is capable of effectively determining the relative permeability of high performance concrete (HPC). Lack of instrument sensitivity and the influence of concrete moisture are proposed as two key reasons for this phenomenon. With limited systematic research carried out in this area to date, the aim if this study was to investigate the influence of instrument sensitivity and moisture condition on air permeability measurements for both normal concrete and HPC. To achieve a range of moisture conditions, samples were dried initially for between one and 5 weeks and then sealed in polythene sheeting and stored in an oven at 50 C to internally distribute moisture evenly. Moisture distribution was determined throughout using relative humidity probe and electrical resistance measurements. Concrete air permeability was subsequently measured using standardised air permeability (Autoclam) and water penetration (BS EN: 12390-8) tests to assess differences between the HPCs tested in this study. It was found that for both normal and high performance concrete, the influence of moisture on Autoclam air permeability results could be eliminated by pre-drying (50 ± 1 C, RH 35%) specimens for 3 weeks. While drying for 5 weeks alone was found not to result in uniform internal moisture distributions, this state was achieved by exposing specimens to a further 3 weeks of sealed pre-conditioning at 50 ± 1 C. While the Autoclam test was not able to accurately identify relative HPC quality due to low sensitivity at associated performance levels, an effective preconditioning procedure to obtain reliable air permeability of HPC concretes was identified. © 2013 The Authors