421 resultados para Antibacterial drug
Resumo:
Punctal plugs (PPs) are miniature medical implants that were initially developed for the treatment of dry eyes. Since their introduction in 1975, many PPs made from different materials and designs have been developed. PPs, albeit generally successful, suffer from drawbacks such as epiphora and suppurative canaliculitis. To overcome these issues intelligent designs of PPs were proposed (e.g. SmartPLUG™ and Form Fit™). PPs are also gaining interest among pharmaceutical scientists for sustaining drug delivery to the eye. This review aims to provide an overview of PPs for dry eye treatment and drug delivery to treat a range of ocular diseases. It also discusses current challenges in using PPs for ocular diseases.
Resumo:
This study assessed the association between glucose-lowering drug (GLD) use, including metformin, sulphonylurea derivatives and insulin, after breast cancer diagnosis and breast cancer-specific and all-cause mortality. 1763 breast cancer patients, diagnosed between 1998 and 2010, with type 2 diabetes were included. Cancer information was retrieved from English cancer registries, prescription data from the UK Clinical Practice Research Datalink and mortality data from the Office of National Statistics (up to January 2012). Time-varying Cox regression models were used to calculate HRs and 95 % CIs for the association between GLD use and breast cancer-specific and all-cause mortality. In 1057 patients with diabetes before breast cancer, there was some evidence that breast cancer-specific mortality decreased with each year of metformin use (adjusted HR 0.88; 95 % CI 0.75–1.04), with a strong association seen with over 2 years of use (adjusted HR 0.47; 95 % CI 0.26–0.82). Sulphonylurea derivative use for less than 2 years was associated with increased breast cancer-specific mortality (adjusted HR 1.70; 95 % CI 1.18–2.46), but longer use was not (adjusted HR 0.94; 95 % CI 0.54–1.66). In 706 patients who developed diabetes after breast cancer, similar patterns were seen for metformin, but sulphonylurea derivative use was strongly associated with cancer-specific mortality (adjusted HR 3.64; 95 % CI 2.16–6.16), with similar estimates for short- and long-term users. This study provides some support for an inverse association between, mainly long-term, metformin use and (breast cancer-specific) mortality. In addition, sulphonylurea derivative use was associated with increased breast cancer-specific mortality, but this should be interpreted cautiously, as it could reflect selective prescribing in advanced cancer patients.
Resumo:
Multidrug resistance in prokaryotes is due primarily to efflux of offending antimicrobials from the cell by representatives of several different families of integral membrane transporter proteins. Clearly, in evolutionary terms, these proteins did not arise specifically to pump human-made antimicrobials out of the cell and thereby confer resistance. Despite this, often only their role in antibiotic resistance is characterised and highlighted.
In recent years, however, a transition from the traditional anthropocentric perception of antibiotic resistance mechanisms in microorganisms has occurred, with naturally produced antimicrobials now generally regarded as physiologically important signalling molecules or sources of nutrition for bacteria rather than antimicrobial agents, and bacterial multidrug efflux proteins not merely as a defensive response to antimicrobials but as important players in fundamental physiological processes such as cellular homeostasis.
This emerging perspective supports the notion that a better understanding of the complexities of infection and multidrug resistance in bacteria can be achieved via a more detailed understanding of those physiological processes. In this chapter, we review the ‘true’ physiological roles of multidrug efflux proteins of the largest non-ATP-hydrolysing family of membrane transporters, the major facilitator superfamily, and explore the evidence for their function in processes such as pH and metal homeostasis, import and export of metabolites and biofilm formation
Resumo:
G-protein coupled receptors (GPCRs) are the targets of over half of all prescribed drugs today. The UniProt database has records for about 800 proteins classified as GPCRs, but drugs have only been developed against 50 of these. Thus, there is huge potential in terms of the number of targets for new therapies to be designed. Several breakthroughs in GPCRs biased pharmacology, structural biology, modelling and scoring have resulted in a resurgence of interest in GPCRs as drug targets. Therefore, an international conference, sponsored by the Royal Society, with world-renowned researchers from industry and academia was recently held to discuss recent progress and highlight key areas of future research needed to accelerate GPCR drug discovery. Several key points emerged. Firstly, structures for all three major classes of GPCRs have now been solved and there is increasing coverage across the GPCR phylogenetic tree. This is likely to be substantially enhanced with data from x-ray free electron sources as they move beyond proof of concept. Secondly, the concept of biased signalling or functional selectivity is likely to be prevalent in many GPCRs, and this presents exciting new opportunities for selectivity and the control of side effects, especially when combined with increasing data regarding allosteric modulation. Thirdly, there will almost certainly be some GPCRs that will remain difficult targets because they exhibit complex ligand dependencies and have many metastable states rendering them difficult to resolve by crystallographic methods. Subtle effects within the packing of the transmembrane helices are likely to mask and contribute to this aspect, which may play a role in species dependent behaviour. This is particularly important because it has ramifications for how we interpret pre-clinical data. In summary, collaborative efforts between industry and academia have delivered significant progress in terms of structure and understanding of GPCRs and will be essential for resolving problems associated with the more difficult targets in the future.
Resumo:
A microwave (MW)-assisted crosslinking process to prepare hydrogel-forming microneedle (MN) arrays was evaluated. Conventionally, such MN arrays are prepared using processes that includes a thermal crosslinking step. Polymeric MN arrays were prepared using poly(methyl vinyl ether-alt-maleic acid) crosslinked by reaction with poly(ethylene glycol) over 24 h at 80 °C. Polymeric MN arrays were prepared to compare conventional process with the novel MW-assisted crosslinking method. Infrared spectroscopy was used to evaluate the crosslinking degree, evaluating the area of the carbonyl peaks (2000–1500 cm−1). It was shown that, by using the MW-assisted process, MN with a similar crosslinking degree to those prepared conventionally can be obtained in only 45 min. The effects of the crosslinking process on the properties of these materials were also evaluated. For this purpose swelling kinetics, mechanical characterisation, and insertion studies were performed. The results suggest that MN arrays prepared using the MW assisted process had equivalent properties to those prepared conventionally but can be produced 30 times faster. Finally, an in vitro caffeine permeation across excised porcine skin was performed using conventional and MW-prepared MN arrays. The release profiles obtained can be considered equivalent, delivering in both cases 3000–3500 μg of caffeine after 24 h.
Resumo:
Introduction: Because a dose–response relationship is characteristic of conventional chemotherapy, this concept is widely used for the development of novel cytotoxic (CTX) drugs. However, the need to reach the MTD to obtain optimal benefit with molecularly targeted agents (MTA) is controversial. In this study, we evaluated the relationship between dose and efficacy in a large cohort of phase I patients with solid tumors.
Experimental Design: We collected data on 1,182 consecutive patients treated in phase I trials in 14 European institutions in 2005–2007. Inclusion criteria were: (i) patients treated within completed single-agent studies in which a maximum-administered dose was defined and (ii) RECIST/survival data available.
Results: Seventy-two percent of patients were included in trials with MTA (N = 854) and 28% in trials with CTX (N = 328). The objective response (OR) rate was 3% and disease control at 6 months was 11%. OR for CTX was associated with higher doses (median 92% of MTD); this was not the case for MTA, where patients achieving OR received a median of 50% of MTD. For trials with MTA, patients treated at intermediate doses (40%–80%) had better survival compared with those receiving low or high doses (P = 0.038). On the contrary, there was a direct association between higher dose and better OS for CTX agents (P = 0.003).
Conclusion: Although these results support the development of novel CTX based on MTD, we found no direct relationship between higher doses and response with MTA in unselected patients. However, the longest OS was seen in patients treated with MTA at intermediate doses (40%–80% of MTD)
Resumo:
INTRODUCTION: Transdermal drug delivery offers a number of advantages for the patient, not only due to its non-invasive and convenient nature, but also due to factors such as avoidance of first-pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedles (MNs) can increase the number of compounds amenable to transdermal delivery by penetrating the skin's protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below.
AREAS COVERED: MNs have been extensively investigated for drug and vaccine delivery. The different types of MN arrays and their delivery capabilities are discussed in terms of drugs, including biopharmaceutics and vaccines. Patient usage and effects on the skin are also considered.
EXPERT OPINION: MN research and development is now at the stage where commercialisation is a viable possibility. There are a number of long-term safety questions relating to patient usage which will need to be addressed moving forward. Regulatory guidance is awaited to direct the scale-up of the manufacturing process alongside provision of clearer patient instruction for safe and effective use of MN devices.
Resumo:
This research book covers the major aspects relating to the use of novel delivery systems in enhancing both transdermal and intradermal drug delivery. It provides a review of transdermal and intradermal drug delivery, including the history of the field and the various methods employed to produce delivery systems from different materials such as device design, construction and evaluation, so as to provide a sound background to the use of novel systems in enhanced delivery applications.
Furthermore, it presents in-depth analyses of recent developments in this exponentially growing field, with a focus on microneedle arrays, needle-free injections, nanoparticulate systems and peptide-carrier-type systems. It also covers conventional physical enhancement strategies, such as tape-stripping, sonophoresis, iontophoresis, electroporation and thermal/suction/laser ablation Discussions about the penetration of the stratum corneum by the various novel strategies highlight the importance of the application method. Comprehensive and critical reviews of transdermal and intradermal delivery research using such systems focus on the outcomes of in vivoanimal and human studies. The book includes laboratory, clinical and commercial case studies featuring safety and patient acceptability studies carried out to date, and depicts a growing area for use of these novel systems is in intradermal vaccine delivery. The final chapters review recent patents in this field and describe the work ongoing in industry.
Resumo:
A strong link between drug use and homelessness has long since been documented in the international literature. However, much of the research has concentrated on the direction of the relationship between drug use and homelessness, seeking to establish drug use as a cause or consequence of homelessness, with far less attention to the intersection of drug and homeless ‘careers’. This paper examines the drug and homeless pathways of young people who are participants in a qualitative longitudinal study of homeless youth in Dublin, Ireland. The findings highlight downward drug transitions as associated with exiting homelessness and continued or escalated consumption as associated with remaining homeless. Analyses of the meanings young people attach to drug use over time reveal the importance of housing as an enabler to engaging with treatment and as assisting the process of becoming and remaining drug free. Young people who remained homeless did not accept their situations, as ‘acculturation’ accounts would suggest; rather, they aspired to changing their situations. However, they also face strong barriers to accessing housing which in turn hamper their efforts to address the matter of their drug use. The implications for how the homeless/drug use ‘nexus’ is conceptualised and understood, as well as implications for policy, are discussed.
Resumo:
Photocatalytic antibacterial low density polyethylene (LDPE)–TiO2 films are produced by an extrusion method and tested for photocatalytic oxidation activity, via the degradation of methylene blue (MB) and photocatalytic antibacterial activity, via the destruction of Escherichia coli. The MB test showed that extruded LDPE films with a TiO2 loading 30 wt.% were of optimum activity with no obvious decrease in film strength, although the activity was less than that exhibited by the commercial self-cleaning glass, Activ®. UVC pre-treatment (9.4 mW cm−2) of the latter film improved its activity, with the level of surface sites available for MB adsorption increasing linearly with UVC dose. Although the MB test revealed an optimum exposure time of ca. 60 min photocatalytic oxidation activity, only 30 min was used in the photocatalytic antibacterial tests in order to combine minimal reduction in film integrity with maximum film photocatalytic activity. The photocatalytic antibacterial activity of the latter film was over 10 times that of a non-UVC treated 30 wt.% TiO2 film, which, in turn was over 100 times more active than Activ®.