363 resultados para retinal images
Resumo:
Social acceptance for wind turbines is variable, providing a challenge to the implementation of this energy source. Psychological research could contribute to the science of climate change. Here we focus on the emotional responses to the visual impact of wind turbines on the landscape, a factor which dominates attitudes towards this technology. Participants in the laboratory viewed images of turbines and other constructions (churches, pylons and power-plants) against rural scenes, and provided psychophysiological and self-report measures of their emotional reactions. We hypothesised that the emotional response to wind turbines would be more negative and intense than to control objects, and that this difference would be accentuated for turbine opponents. As predicted, the psychophysiological response to turbines was stronger than the response to churches, but did not differ from that of other industrial constructions. In contrast with predictions, turbines were rated as less aversive and more calming compared with other industrial constructions, and equivalent to churches. Supporters and non-supporters did not differ significantly from each other. We discuss how a methodology using photo manipulations and emotional self-assessments can help estimate the emotional reaction to the visual impact on the landscape at the planning stage for new wind turbine applications.
Resumo:
BACKGROUND: Diabetic retinopathy is an important cause of visual loss. Laser photocoagulation preserves vision in diabetic retinopathy but is currently used at the stage of proliferative diabetic retinopathy (PDR).
OBJECTIVES: The primary aim was to assess the clinical effectiveness and cost-effectiveness of pan-retinal photocoagulation (PRP) given at the non-proliferative stage of diabetic retinopathy (NPDR) compared with waiting until the high-risk PDR (HR-PDR) stage was reached. There have been recent advances in laser photocoagulation techniques, and in the use of laser treatments combined with anti-vascular endothelial growth factor (VEGF) drugs or injected steroids. Our secondary questions were: (1) If PRP were to be used in NPDR, which form of laser treatment should be used? and (2) Is adjuvant therapy with intravitreal drugs clinically effective and cost-effective in PRP?
ELIGIBILITY CRITERIA: Randomised controlled trials (RCTs) for efficacy but other designs also used.
REVIEW METHODS: Systematic review and economic modelling.
RESULTS: The Early Treatment Diabetic Retinopathy Study (ETDRS), published in 1991, was the only trial designed to determine the best time to initiate PRP. It randomised one eye of 3711 patients with mild-to-severe NPDR or early PDR to early photocoagulation, and the other to deferral of PRP until HR-PDR developed. The risk of severe visual loss after 5 years for eyes assigned to PRP for NPDR or early PDR compared with deferral of PRP was reduced by 23% (relative risk 0.77, 99% confidence interval 0.56 to 1.06). However, the ETDRS did not provide results separately for NPDR and early PDR. In economic modelling, the base case found that early PRP could be more effective and less costly than deferred PRP. Sensitivity analyses gave similar results, with early PRP continuing to dominate or having low incremental cost-effectiveness ratio. However, there are substantial uncertainties. For our secondary aims we found 12 trials of lasers in DR, with 982 patients in total, ranging from 40 to 150. Most were in PDR but five included some patients with severe NPDR. Three compared multi-spot pattern lasers against argon laser. RCTs comparing laser applied in a lighter manner (less-intensive burns) with conventional methods (more intense burns) reported little difference in efficacy but fewer adverse effects. One RCT suggested that selective laser treatment targeting only ischaemic areas was effective. Observational studies showed that the most important adverse effect of PRP was macular oedema (MO), which can cause visual impairment, usually temporary. Ten trials of laser and anti-VEGF or steroid drug combinations were consistent in reporting a reduction in risk of PRP-induced MO.
LIMITATION: The current evidence is insufficient to recommend PRP for severe NPDR.
CONCLUSIONS: There is, as yet, no convincing evidence that modern laser systems are more effective than the argon laser used in ETDRS, but they appear to have fewer adverse effects. We recommend a trial of PRP for severe NPDR and early PDR compared with deferring PRP till the HR-PDR stage. The trial would use modern laser technologies, and investigate the value adjuvant prophylactic anti-VEGF or steroid drugs.
STUDY REGISTRATION: This study is registered as PROSPERO CRD42013005408.
FUNDING: The National Institute for Health Research Health Technology Assessment programme.
Resumo:
This paper focuses on quantifying the benefits of pictogram based instructions relative to static images for work instruction delivery. The assembly of a stiffened aircraft panel has been used as an exemplar for the work which seeks to address the challenge of identifying an instructional mode that can be location or language neutral while at the same time optimising assembly build times and maintaining build quality. Key performance parameters measured using a series of panel build experiments conducted by two separate groups were: overall build time, the number of subject references to instructional media, the number of build errors and the time taken to correct any mistakes. Overall build time for five builds for a group using pictogram instructions was about 20% lower than for the group using image based instructions. Also, the pictogram group made fewer errors. Although previous work identified that animated instructions result in optimal build times, the language neutrality of pictograms as well as the fact that they can be used without visualisation hardware mean that, on balance, they have broader applicability in terms of transferring assembly knowledge to the manufacturing environment.
Resumo:
PURPOSE: It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats.
METHODS: Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS).
RESULTS: Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors.
CONCLUSIONS: The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.
Resumo:
Current therapies that target vascular endothelial growth factor (VEGF) have become a mainstream therapy for the management of diabetic macular oedema. The treatment involves monthly repeated intravitreal injections of VEGF inhibitors. VEGF is an important growth factor for many retinal cells, including different types of neurons. In this study, we investigated the adverse effect of multiple intravitreal anti-VEGF injections (200 ng/μl/eye anti-mouse VEGF164, once every 2 weeks totalling 5-6 injections) to retinal neurons in Ins2(Akita) diabetic mice. Funduscopic examination revealed the development of cotton wool spot-like lesions in anti-VEGF treated Ins2(Akita) mice after 5 injections. Histological investigation showed focal swellings of retinal nerve fibres with neurofilament disruption. Furthermore, anti-VEGF-treated Ins2(Akita) mice exhibited impaired electroretinographic responses, characterized by reduced scotopic a- and b-wave and oscillatory potentials. Immunofluorescent staining revealed impairment of photoreceptors, disruptions of synaptic structures and loss of amacrine and retinal ganglion cells in anti-VEGF treated Ins2(Akita) mice. Anti-VEGF-treated WT mice also presented mild amacrine and ganglion cell death, but no overt abnormalities in photoreceptors and synaptic structures. At the vascular level, exacerbated albumin leakage was observed in anti-VEGF injected diabetic mice. Our results suggest that sustained intraocular VEGF neutralization induces retinal neurodegeneration and vascular damage in the diabetic eye.
Resumo:
OBJECTIVE: To assess the impact of laser peripheral iridotomy (LPI) on forward-scatter of light and subjective visual symptoms and to identify LPI parameters influencing these phenomena. DESIGN: Cohort study derived from a randomized trial, using an external control group. PARTICIPANTS: Chinese subjects initially aged 50 or older and 70 years or younger with bilateral narrow angles undergoing LPI in 1 eye selected at random, and age- and gender-matched controls. METHODS: Eighteen months after laser, LPI-treated subjects underwent digital iris photography and photogrammetry to characterize the size and location of the LPI, Lens Opacity Classification System III cataract grading, and measurement of retinal straylight (C-Quant; OCULUS, Wetzlar, Germany) in the treated and untreated eyes and completed a visual symptoms questionnaire. Controls answered the questionnaire and underwent straylight measurement and (in a random one-sixth sample) cataract grading. MAIN OUTCOME MEASURES: Retinal straylight levels and subjective visual symptoms. RESULTS: Among 230 LPI-treated subjects (121 [58.8%] with LPI totally covered by the lid, 43 [19.8%] with LPI partly covered by the lid, 53 [24.4%] with LPI uncovered by the lid), 217 (94.3%) completed all testing, as did 250 (93.3%) of 268 controls. Age, gender, and prevalence of visual symptoms did not differ between treated subjects and controls, although nuclear (P<0.01) and cortical (P = 0.03) cataract were less common among controls. Neither presenting visual acuity nor straylight score differed between the treated and untreated eyes among all treated persons, nor among those (n = 96) with LPI partially or totally uncovered. Prevalence of subjective glare did not differ significantly between participants with totally covered LPI (6.61%; 95% confidence interval [CI], 3.39%-12.5%), partially covered LPI (11.6%; 95% CI, 5.07%-24.5%), or totally uncovered LPI (9.43%; 95% CI, 4.10%-10.3%). In regression models, only worse cortical cataract grade (P = 0.01) was associated significantly with straylight score, and no predictors were associated with subjective glare. None of the LPI size or location parameters were associated with straylight or subjective symptoms. CONCLUSIONS: These results suggests that LPI is safe regarding measures of straylight and visual symptoms. This randomized design provides strong evidence that treatment programs for narrow angles would be unlikely to result in important medium-term visual disability.
Resumo:
Retinal pigment epithelial (RPE) cells are central to retinal health and homoeostasis. Dysfunction or death of RPE cells underlies many age-related retinal degenerative disorders particularly age-related macular degeneration. During aging RPE cells decline in number, suggesting an age-dependent cell loss. RPE cells are considered to be postmitotic, and how they repair damage during aging remains poorly defined. We show that RPE cells increase in size and become multinucleate during aging in C57BL/6J mice. Multinucleation appeared not to be due to cell fusion, but to incomplete cell division, that is failure of cytokinesis. Interestingly, the phagocytic activity of multinucleate RPE cells was not different from that of mononuclear RPE cells. Furthermore, exposure of RPE cells in vitro to photoreceptor outer segment (POS), particularly oxidized POS, dose-dependently promoted multinucleation and suppressed cell proliferation. Both failure of cytokinesis and suppression of proliferation required contact with POS. Exposure to POS also induced reactive oxygen species and DNA oxidation in RPE cells. We propose that RPE cells have the potential to proliferate in vivo and to repair defects in the monolayer. We further propose that the conventionally accepted 'postmitotic' status of RPE cells is due to a modified form of contact inhibition mediated by POS and that RPE cells are released from this state when contact with POS is lost. This is seen in long-standing rhegmatogenous retinal detachment as overtly proliferating RPE cells (proliferative vitreoretinopathy) and more subtly as multinucleation during normal aging. Age-related oxidative stress may promote failure of cytokinesis and multinucleation in RPE cells.
Targeting the complement system for the management of retinal inflammatory and degenerative diseases
Resumo:
The retina, an immune privileged tissue, has specialized immune defense mechanisms against noxious insults that may exist in diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR), uveoretinitis and glaucoma. The defense system consists of retinal innate immune cells (including microglia, perivascular macrophages, and a small population of dendritic cells) and the complement system. Under normal aging conditions, retinal innate immune cells and the complement system undergo a low-grade activation (parainflammation) which is important for retinal homeostasis. In disease states such as AMD and DR, the parainflammatory response is dysregulated and develops into detrimental chronic inflammation. Complement activation in the retina is an important part of chronic inflammation and may contribute to retinal pathology in these disease states. Here, we review the evidence that supports the role of uncontrolled or dysregulated complement activation in various retinal degenerative and angiogenic conditions. We also discuss current strategies that are used to develop complement-based therapies for retinal diseases such as AMD. The potential benefits of complement inhibition in DR, uveoretinitis and glaucoma are also discussed, as well as the need for further research to better understand the mechanisms of complement-mediated retinal damage in these disease states.