407 resultados para Refraction, Astronomical.
Resumo:
he double-detonation explosion scenario of Type Ia supernovae (SNe Ia) has gained increased support from the SN Ia community as a viable progenitor model, making it a promising candidate alongside the well-known single degenerate and double degenerate scenarios. We present delay times of double-detonation SNe, in which a sub-Chandrasekhar mass carbon–oxygen white dwarf (WD) accretes non-dynamically from a helium-rich companion. One of the main uncertainties in quantifying SN rates from double detonations is the (assumed) retention efficiency of He-rich matter. Therefore, we implement a new prescription for the treatment of accretion/accumulation of He-rich matter on WDs. In addition, we test how the results change depending on which criteria are assumed to lead to a detonation in the helium shell. In comparing the results to our standard case (Ruiter et al.), we find that regardless of the adopted He accretion prescription, the SN rates are reduced by only ∼25 per cent if low-mass He shells (≲0.05 M⊙) are sufficient to trigger the detonations. If more massive (0.1 M⊙) shells are needed, the rates decrease by 85 per cent and the delay time distribution is significantly changed in the new accretion model – only SNe with prompt (<500 Myr) delay times are produced. Since theoretical arguments favour low-mass He shells for normal double-detonation SNe, we conclude that the rates from double detonations are likely to be high, and should not critically depend on the adopted prescription for accretion of He.
Resumo:
SN 2010lp is a subluminous Type Ia supernova (SN Ia) with slowly evolving lightcurves. Moreover, it is the only subluminous SN Ia observed so far that shows narrow emission lines of [O I] in late-time spectra, indicating unburned oxygen close to the center of the ejecta. Most explosion models for SNe Ia cannot explain the narrow [O I] emission. Here, we present hydrodynamic explosion and radiative transfer calculations showing that the violent merger of two carbon-oxygen white dwarfs of 0.9 and 0.76 M adequately reproduces the early-time observables of SN 2010lp. Moreover, our model predicts oxygen close to the center of the explosion ejecta, a pre-requisite for narrow [O I] emission in nebular spectra as observed in SN 2010lp. © 2013. The American Astronomical Society. All rights reserved.
Resumo:
In a companion paper, Seitenzahl et al. have presented a set of three-dimensional delayed detonation models for thermonuclear explosions of near-Chandrasekhar-mass white dwarfs (WDs). Here,we present multidimensional radiative transfer simulations that provide synthetic light curves and spectra for those models. The model sequence explores both changes in the strength of the deflagration phase (which is controlled by the ignition configuration in our models) and the WD central density. In agreement with previous studies, we find that the strength of the deflagration significantly affects the explosion and the observables. Variations in the central density also have an influence on both brightness and colour, but overall it is a secondary parameter in our set of models. In many respects, the models yield a good match to the observed properties of normal Type Ia supernovae (SNe Ia): peak brightness, rise/decline time-scales and synthetic spectra are all in reasonable agreement. There are, however, several differences. In particular, the models are systematically too red around maximum light, manifest spectral line velocities that are a little too high and yield I-band light curves that do not match observations. Although some of these discrepancies may simply relate to approximations made in the modelling, some pose real challenges to the models. If viewed as a complete sequence, our models do not reproduce the observed light-curve width- luminosity relation (WLR) of SNe Ia: all our models show rather similar B-band decline rates, irrespective of peak brightness. This suggests that simple variations in the strength of the deflagration phase in Chandrasekhar-mass deflagration-to-detonation models do not readily explain the observed diversity of normal SNe Ia. This may imply that some other parameter within the Chandrasekhar-mass paradigm is key to the WLR, or that a substantial fraction of normal SNe Ia arise from an alternative explosion scenario.
Resumo:
We present a first systematic comparison of superluminous Type Ia supernovae (SNe Ia) at late epochs, including previously unpublished photometric and spectroscopic observations of SN 2007if, SN 2009dc and SNF20080723-012. Photometrically, the objects of our sample show a diverse late-time behaviour, some of them fading quite rapidly after a light-curve break at ∼ 150-200 d. The latter is likely the result of flux redistribution into the infrared, possibly caused by dust formation, rather than a true bolometric effect. Nebular spectra of superluminous SNe Ia are characterized by weak or absent [Fe III] emission, pointing at a low ejecta ionization state as a result of high densities. To constrain the ejecta and Ni masses of superluminous SNe Ia, we compare the observed bolometric light curve of SN 2009dc with synthetic model light curves, focusing on the radioactive tail after ∼60 d. Models with enough Ni to explain the light-curve peak by radioactive decay, and at the same time sufficient mass to keep the ejecta velocities low, fail to reproduce the observed light-curve tail of SN 2009dc because of too much γ -ray trapping.We instead propose a model with ∼1M of Ni and ∼2 M of ejecta, which may be interpreted as the explosion of a Chandrasekhar-mass white dwarf (WD) enshrouded by 0.6-0.7 M of C/O-rich material, as it could result from a merger of two massive C/O WDs. This model reproduces the late light curve of SN 2009dc well. A flux deficit at peak may be compensated by light from the interaction of the ejecta with the surrounding material.
Resumo:
We accurately determine the fundamental system parameters of the neutron star X-ray transient Cen X-4 solely using phase-resolved high-resolution UV-Visual Echelle Spectrograph spectroscopy. We first determine the radial-velocity curve of the secondary star and then model the shape of the phase-resolved absorption line profiles using an X-ray binary model. The model computes the exact rotationally broadened, phase-resolved spectrum and does not depend on assumptions about the rotation profile, limb-darkening coefficients and the effects of contamination from an accretion disc. We determine the secondary star-to-neutron star binary mass ratio to be 0.1755 ± 0.0025, which is an order of magnitude more accurate than previous estimates. We also constrain the inclination angle to be 32^{+8}_{-2} degrees. Combining these values with the results of the radial-velocity study gives a neutron star mass of 1.94^{+0.37}_{-0.85}M⊙ consistent with previous estimates. Finally, we perform the first Roche tomography reconstruction of the secondary star in an X-ray binary. The tomogram reveals surface inhomogeneities that are due to the presence of cool starspots. A large cool polar spot, similar to that seen in Doppler images of rapidly rotating isolated stars, is present on the Northern hemisphere of the K7 secondary star and we estimate that ~4 percent of the total surface area of the donor star is covered with spots.This evidence for starspots supports the idea that magnetic braking plays an important role in the evolution of low-mass X-ray binaries.
A window on exoplanet dynamical histories: Rossiter-McLaughlin observations of WASP-13b and WASP-32b
Resumo:
We present Rossiter-McLaughlin observations of WASP-13b and WASP-32b and determine the sky-projected angle between the normal of the planetary orbit and the stellar rotation axis (λ). WASP-13b and WASP-32b both have prograde orbits and are consistent with alignment with measured sky-projected angles of λ =8°^{+13}_{-12} and λ =-2°^{+17}_{-19}, respectively. Both WASP-13 and WASP-32 have Teff < 6250 K, and therefore, these systems support the general trend that aligned planetary systems are preferentially found orbiting cool host stars. A Lomb-Scargle periodogram analysis was carried out on archival SuperWASP data for both systems. A statistically significant stellar rotation period detection (above 99.9 per cent confidence) was identified for the WASP-32 system with Prot =11.6 ± 1.0 days. This rotation period is in agreement with the predicted stellar rotation period calculated from the stellar radius, R*, and vsin i if a stellar inclination of i* =90° is assumed. With the determined rotation period, the true 3D angle between the stellar rotation axis and the planetary orbit, ψ, was found to be ψ = 11° ± 14°. We conclude with a discussion on the alignment of systems around cool host stars with Teff < 6150 K by calculating the tidal dissipation time-scale. We find that systems with short tidal dissipation time-scales are preferentially aligned and systems with long tidal dissipation time-scales have a broad range of obliquities.
Resumo:
We present the results of a search for the reactivation of active asteroid 176P/LINEAR during its 2011 perihelion passage using deep optical observations obtained before, during, and after that perihelion passage. Deep composite images of 176P constructed from data obtained between 2011 June and 2011 December show no visible signs of activity, while photometric measurements of the object during this period also show no significant brightness enhancements similar to that observed for 176P between 2005 November and 2005 December when it was previously observed to be active. An azimuthal search for dust emission likewise reveals no evidence for directed emission (i.e., a tail, as was previously observed for 176P), while a one-dimensional surface brightness profile analysis shows no indication of a spherically symmetric coma at any time in 2011. We conclude that 176P did not in fact exhibit activity in 2011, at least not on the level on which it exhibited activity in 2005, and suggest that this could be due to the devolatization or mantling of the active site responsible for its activity in 2005.
Resumo:
We present the results of a line identification analysis using data from the IRAM Plateau de Bure Inferferometer, focusing on six massive star-forming hot cores: G31.41+0.31, G29.96-0.02, G19.61-0.23, G10.62-0.38, G24.78+0.08A1 and G24.78+0.08A2. We identify several transitions of vibrationally excited methyl formate (HCOOCH$_3$) for the first time in these objects as well as transitions of other complex molecules, including ethyl cyanide (C$_2$H$_5$CN), and isocyanic acid (HNCO). We also postulate a detection of one transition of glycolaldehyde (CH$_2$(OH)CHO) in two new hot cores. We find G29.96-0.02, G19.61-0.23, G24.78+0.08A1 and 24.78+0.08A2 to be chemically very similar. G31.41+0.31, however, is chemically different: it manifests a larger chemical inventory and has significantly larger column densities. We suggest that it may represent a different evolutionary stage to the other hot cores in the sample, or it may surround a star with a higher mass. We derive column densities for methyl formate in G31.41+0.31, using the rotation diagram method, of $\times$10$^{17}$ cm$^{-2}$ and a T$_{rot}$ of $\sim$170 K. For G29.96-0.02, G24.78+0.08A1 and G24.78+0.08A2, glycolaldehyde, methyl formate and methyl cyanide all seem to trace the same material and peak at roughly the same position towards the dust emission peak. For G31.41+0.31, however, glycolaldehyde shows a different distribution to methyl formate and methyl cyanide and seems to trace the densest, most compact inner part of hot cores.
Resumo:
We present new detections of cyanodiacetylene (HC5N) toward hot molecular cores, observed with the Tidbinbilla 34 m radio telescope (DSS–34). In a sample of 79 hot molecular cores, HC5N was detected towards 35. These results are counter to the expectation that long chain cyanopolyynes, such as HC5N, are not typically found in hot molecular cores, unlike their shorter chain counterpart HC3N. However it is consistent with recent models which suggest HC5N may exist for a limited period during the evolution of hot molecular cores.
Resumo:
We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves >99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a nonphysical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss, and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains highly efficient at detecting objects but drops to 80% efficiency at producing orbits. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.
Resumo:
Context: Mg VIII emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg VIII emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics.
Aims. Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg VIII ion. The 125 levels arise from the 2s(2)2p, 2s(2)p2, 2p(3), 2s(2)3s, 2s(2)3p, 2s(2)3d, 2s2p3s, 2s2p3p, 2s2p3d, 2p(2)3s, 2p(2)3p and 2p(2)3d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg VIII models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 angstrom, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 angstrom) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data.
Methods. The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg VIII models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas.
Results. The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the observed values from the SERTS-89 and SUMER spectra. Theoretical soft X-ray emission lines are presented and several density diagnostic line ratios examined, which are in reasonable agreement with the limited observational data available.
Resumo:
The icy surfaces of dust grains in the Interstellar Medium and those of comets, satellites and Kuiper Belt Objects are continuously exposed tophoton and charged particle irradiation. These energetic particles maysputter and induce chemical changes in the ices and the underlyingsurfaces.In the present work 258 nm thick O2 and H2O ices were deposited at 10 K with the thickness measured by a laser interferometer method. Asimple model fit to the reflected laser intensity as measured by aphotodiode detector enabled the refractive index of the ices to bedetermined. The ices were then irradiated with various singly and doublycharged ions such as He+, 13C+, N+, O+ , Ar+, 13C2+, N2+ and O2+ at 4keV. The decrease in ice thickness as a function of ion dose wasmonitored by a laser interferometer and the model used to determine thesputtering yield as shown in Figure 1.In the case of O2 ice thesputtering yields increased with increasing ion mass in good agreementwith a model calculation [Fama, J, Shi, R.A Baragiola, Surface Sci.,602, 156 (2007)]. In the case of O2 ice, O2+ has a significant lowersputtering yield when compared to O+. The sputtering yields for O2 icewere found to be at least 9 times larger compared to those for H2O ice.For H2O ice the sputter yields for C, N and O ions were found todecrease with increasing mass. Doubly charged C, N and O ions which werefound to have the same sputtering yield as the singly charged ionswithin the experimental errors. A preliminary TPD study was carried outusing a QMS to detect the desorbed species from water ice afterirradiation by 6 × 10^15 ions of 13C+ and 13C2+. The formation of13CO and 13CO2 was observed with the yield of 13CO almost of a factor of100 larger than of 13CO2. This is in contrast to our earlier work whereonly CO¬2 was observed.
Resumo:
Near-Earth asteroid (25143) Itokawa was visited by the Hayabusa spacecraft in 2005, resulting in a highly detailed surface shape and topography model. This model has led to several predictions for the expected radiative torques on this asteroid, suggesting that its spin rate should be decelerating. Through an observational survey spanning 2001 to 2013 we have successfully measured an acceleration in its spin rate of dω/dt = 3.54 (± 0.38) × 10^(-8) rad day^(-2), equivalent to a decrease of its rotation period of ~ 45 ms year^(-1). Using the shape model determined from the Hayabusa spacecraft, we applied a detailed thermophysical analysis, to reconcile the predicted YORP strength with that observed. We find that the center-of-mass for Itokawa must be shifted by ~20 m along the long-axis of the asteroid to reconcile observations with theory. This can be explained if Itokawa is composed of two separate bodies with very different bulk densities of 1740 ± 110 kg m^(-3) and 2730 ± 440 kg m^(-3), and was formed from the merger of two separate bodies, consistent with the collapse of a binary system or the re-accumulation of material from a catastrophic collisional disruption. We demonstrate that an observational measurement of radiative torques, when combined with a detailed shape model, can provide insight into the interior structure of an asteroid.
Resumo:
We are conducting an ESO Large Program that includes optical photometry, thermal-IR observations, and optical-NIR spectroscopy of selected NEAs. Among the principal goals of the program are shape and spin-state modeling, and searching for YORP-induced changes in rotation periods. One of our targets is asteroid (1917) Cuyo, a near-Earth asteroid from the Amor group. We carried out an extensive observing campaign on Cuyo between April 2010 and April 2013, operating primarily at the ESO 3.6m NTT for optical photometry, and the 8.2m VLT at Paranal for thermal-IR imaging. Further optical observations were acquired at the ESO 2.2m telescope, the Palomar 200" Hale telescope (California), JPL’s Table Mountain Observatory (California) and the Faulkes Telescope South (Australia). We obtained optical imaging data for rotational lightcurves throughout this period, as the asteroid passed through a wide range of observational geometries, conducive to producing a good shape model and spin state solution. The preliminary shape and spin state model indicates a nearly spherical shape and a rotation pole at ecliptic longitude λ = 53° ± 20° and latitude β = -37° ± 10° (1-sigma error bars are approximate). The sidereal rotation period was measured to be 2.6899522 ± (3 × 10^-7) hours. Linkage with earlier lightcurve data shows possible evidence of a small change in rotation rate during the period 1989-2013. We applied the NEATM thermal model (Harris A., Icarus 131, 291, 1998) to our VLT thermal-IR measurements (8-19.6 μm), obtained in September and December 2011. The derived effective diameter ranges from 3.4 to 4.2 km, and the geometric albedo is 0.16 (+0.07, -0.04). Using the shape model and thermal fluxes we will perform a detailed thermophysical analysis using the new Advanced Thermophysical Model (Rozitis, B. & Green, S.F., MNRAS 415, 2042, 2011; Rozitis, B. & Green, S.F., MNRAS 423, 367, 2012). This work was performed in part at the Jet Propulsion Laboratory under a contract with NASA.
Resumo:
Infrared water line emission from protoplanetary disks, recently observed by the Spitzer and Herschel space telescopes, is thought to trace the surface layer of the inner to outer regions of the disks. We have modelled the water abundance profile and line emission, especially focusing on the effects of dust size growth and turbulent mixing. Comparison between model calculations and observations suggests a small grain model with turbulent mixing is preferred. Copyright © International Astronomical Union 2014.