355 resultados para Alkali activated cement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The precise regulatory mechanisms of amplification and downregulation of the pro- and anti-inflammatory cytokines in the inflammatory response have not been fully delineated. Although activated protein C (APC) and its precursor protein C (PC) have recently been reported to be promising therapeutic agents in the management of meningococcal sepsis, direct evidence for the anti-inflammatory effect remains scarce. We report that APC inhibits in vitro the release of tumor necrosis factor (TNF) and macrophage migration inhibitory factor (MIF), two known cytokine mediators of bacterial septic shock, from lipopolysaccharide (LPS)-stimulated human monocytes. The THP-1 monocytic cell line, when stimulated with LPS and concomitant APC, exhibited a marked reduction in the release of TNF and MIF protein in a concentration-dependent manner compared to cells stimulated with LPS alone. This effect was observed only when incubations were performed in serum-free media, but not in the presence of 1-10% serum. Serum-mediated inhibition could only be overcome by increasing APC concentrations to far beyond physiological levels, suggesting the presence of endogenous serum-derived APC inhibitors. Inhibition of MIF release by APC was found to be independent of TNF, as stimulation of MIF release by LPS was unaltered in the presence of anti-TNF antibodies. Our data confirm that the suggested anti-inflammatory properties of APC are due to direct inhibition of the release of the pro-inflammatory monokine TNF, and imply that the anti-inflammatory action of APC is also mediated via inhibition of MIF release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated protein C (APC) protects against sepsis in animal models and inhibits the lipopolysacharide (LPS)-induced elaboration of proinflammatory cytokines from monocytes. The molecular mechanism responsible for this property is unknown. We assessed the effect of APC on LPS-induced tumour necrosis factor alpha (TNF-alpha) production and on the activation of the central proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB) in a THP-1 cell line. Cells were preincubated with varying concentrations of APC (200 microg/ml, 100 microg/ml and 20 microg/ml) before addition of LPS (100 ng/ml and 10 microg/ml). APC inhibited LPS-induced production of TNF-alpha both in the presence and absence of fetal calf serum (FCS), although the effect was less marked with 10% FCS. APC also inhibited LPS-induced activation of NF-kappaB, with APC (200 microg/ml) abolishing the effect of LPS (100 ng/ml). The ability of APC to inhibit LPS-induced translocation of NF-kappaB is likely to be a significant event given the critical role of the latter in the host inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rab5-dependent endosome fusion is sensitive to the phosphoinositide 3-kinase inhibitor, wortmannin. It has been proposed that phosphoinositide 3-kinase activity may be required for activation of rab5 by influencing its nucleotide cycle such as to promote its active GTP state. In this report we demonstrate that endosome fusion remains sensitive to wortmannin despite preloading of endosomes with stimulatory levels of a GTPase-defective mutant rab5(Q79L) or of a xanthosine triphosphate-binding mutant, rab5(D136N), in the presence of the nonhydrolysable analogue XTPgammaS. These results suggest that activation of rab5 cannot be the principal function of the wortmannin-sensitive factor on the endosome fusion pathway. This result is extrapolated to all GTPases by demonstrating that endosome fusion remains wortmannin sensitive despite prior incubation with the nonhydrolysable nucleotide analogue GTPgammaS. Consistent with these results, direct measurement of clathrin-coated vesicle-stimulated nucleotide dissociation from exogenous rab5 was insensitive to the presence of wortmannin. A large excess of rab5(Q79L), beyond levels required for maximal stimulation of the fusion assay, afforded protection against wortmannin inhibition, and partial protection was also observed with an excess of wild-type rab5 independent of GTPgammaS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of 90Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that 90Sr is stable when it substitutes the Ca2+ ions in C-S-H, and so is its daughter nucleus 90Y after β-decay. Interestingly, 90Zr, daughter of 90Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for 90Sr storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calcineurin/nuclear factor of activated T-cell (NFAT) pathway represents a crucial transducer of cellular function. There is increasing evidence placing the sarcolemmal calcium pump, or plasma membrane calcium/calmodulin ATPase pump (PMCA), as a potential modulator of signal transduction pathways. We demonstrate a novel interaction between PMCA and the calcium/calmodulin-dependent phosphatase, calcineurin, in mammalian cells. The interaction domains were located to the catalytic domain of PMCA4b and the catalytic domain of the calcineurin A subunit. Endogenous calcineurin activity, assessed by measuring the transcriptional activity of its best characterized substrate, NFAT, was significantly inhibited by 60% in the presence of ectopic PMCA4b. This inhibition was notably reversed by the co-expression of the PMCA4b interaction domain, demonstrating the functional significance of this interaction. PMCA4b was, however, unable to confer its inhibitory effect in the presence of a calcium/calmodulin-independent constitutively active mutant calcineurin A suggesting a calcium/calmodulin-dependent mechanism. The modulatory function of PMCA4b is further supported by the observation that endogenous calcineurin moves from the cytoplasm to the plasma membrane when PMCA4b is overexpressed. We suggest recruitment by PMCA4b of calcineurin to a low calcium environment as a possible explanation for these findings. In summary, our results offer strong evidence for a novel functional interaction between PMCA and calcineurin, suggesting a role for PMCA as a negative modulator of calcineurin-mediated signaling pathways in mammalian cells. This study reinforces the emerging role of PMCA as a molecular organizer and regulator of signaling transduction pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Protease activated receptors (PAR) belong to a subfamily of G protein coupled receptors. They consist of seven transmembrane domains but are not classical receptors as their agonist is a circulating serine proteinase. This proteinase cleaves an N-terminal extracellular domain of the receptor to reveal a new N-terminal tethered ligand which binds intramolecularly, thus converting an extracellular proteolytic event into a transmembrane signal. Therefore, the cleavage and activation of PARs provide a mechanism whereby proteinases can directly influence the inflammatory response. Gingival hyperplasia or gingival enlargement is a side effect of some drugs such as cyclosporine, a potent immunosuppressant. To date, the potential role of PAR in the inflammation associated with the pathogenesis of gingival overgrowth has not been studied. Objectives: The present study was designed to determine whether proteinases derived from extracts of cyclosporine induced hyperplasia were capable of activating PAR in vitro. Methods: Cell lysates were derived from tissue obtained from gingival overgrowth of patients requiring surgical excision. Cell lines over-expressing PARs were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% foetal calf serum (FCS) in 5% CO2. The cells were treated with gingival overgrowth lysates and agonist stimulated calcium release from the cells was recorded using the Fluo-4-Direct™ Calcium Assay Kit from Invitrogen, according to manufacturer's instructions. Results: Calcium release by activated PAR on tumour cells was detected in those treated with gingival hyperplasia lysates. Samples from healthy gingival fibroblasts did not elicit this response. Conclusions: The identification of mediators of the molecular events central to the inflammatory phenotype elicited by gingival hyperplasia is important. To this end, our experiments show that in vitro, enzymes derived from overgrown gingival tissue are capable of activating PAR and thereby provide evidence for the potential role of PAR in sustaining gingival hyperplasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Protease activated receptors (PARs) are G-protein-coupled transmembrane receptors that are expressed on many cell types and implicated in various inflammatory processes in vivo. The induction of PAR2 as a result of the inflammatory response associated with dental caries remains to be determined. Objectives: The aim was to localise the expression of PAR2 in human dental pulp from carious teeth and to confirm receptor functionality using an in vitro assay. Methods: Dental pulp sections from decalcified carious teeth were examined by immunocytochemsitry. Membrane preparations from cultured pulp fibroblasts were subject to SDS-PAGE and immunoblotting to confirm fibroblast-associated immunoreactivity. The functionality of PAR2 on dental pulp fibroblasts was studied using calcium imaging in the presence of several potential activators including a PAR2 agonist (PAR2-AP), trypsin and pulpal enzymes from a carious tooth. Results: Immunocytochemistry revealed intense PAR2 immunoreactivity on pulpal fibroblasts subjacent to carious lesions but not in surrounding regions of the dental pulp. Pulp specimens from a dental injury model showed no expression of PAR2, suggesting its expression was related to cellular changes associated with ongoing caries. The localisation of PAR2 staining to pulpal fibroblasts in carious teeth was confirmed by Western blotting which revealed PAR2 immunoreactive bands in membrane fractions prepared from pulp fibroblasts. In functional studies, challenge of cultured pupal fibroblasts with PAR2-AP, trypsin and an extract of proteolytic enzymes from a carious dental pulp, showed specific activation of PAR2. Conclusions: This work demonstrates that PAR2 is functional and inducible in human dental pulp fibroblasts in response to caries and that endogenous pulpal enzymes can activate PAR2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results from the experimental investigation on heat activated prestressing of Shape Memory Alloy (SMA) wires for active confinement of concrete sections. Active confinement of concrete is found to be much more effective than passive confinement which becomes effective only when the concrete starts to dilate. Active confinement achieved using conventional prestressing techniques often faces many obstacles due to practical limitations. A class of smart materials that has recently drawn attention in civil engineering is the super elastic SMA which has the ability to undergo reversible hysteretic shape change known as the shape memory effect. The shape memory effect of SMAs can be utilized to develop a convenient prestressing technique for active confinement of concrete sections.
In this study a series of experimental tests are conducted to study Heat Activated Prestress (HAP) in SMAs. Three different types of tests are conducted with different loading protocol to determine parameters such as HAP, residual strain after heating and range of strain that can be used for effective active confinement after HAP. Test results show a maximum HAP of about 500 MPa can be achieved after heating and approximately 450MPa is retained at 25oC in specimens pre-strained by 6%. A substantial amount of strain recovery upon unloading and after heating the SMA wires is recorded. About 2.5% elastic strain recovery upon unloading from 6% strain level is observed. In the specimen pre-strained by 6%, a total of 4% strain is recovered when unloaded after heating. A strain range of 3% is found available for effective confinement after HAP. Test results demonstrate that SMAs have unique features that can be intelligently employed in many civil engineering applications including active confinement of concrete sections.