354 resultados para retinal disorders
Resumo:
Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1, also known as CEP90, and C21orf2, also known as LRRC76, as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2 variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.
Resumo:
BACKGROUND: The chronic myeloproliferative disorders (MPD) are clonal haemopoietic stem cell disorders.
AIMS: The incidence of JAK2 V617F mutation was sought in a population of patients with MPD.
METHODS: The JAK2 V617 mutation status was determined in 79 patients with known MPD and 59 patients with features suggestive of MPD.
RESULTS: The mutation was found in patients with polycythaemia vera, essential thrombocythaemia, idiopathic myelofibrosis and in patients with other chronic myeloproliferative disorders. Eight JAK2 V617F positive cases were identified amongst those patients with features suggestive of MPD.
CONCLUSIONS: The incidence of the JAK2 V617F mutation in MPD patients is similar to that reported by other groups. The assay confirmed and refined the diagnosis of several patients with features indicative of MPD. We suggest screening for this mutation in all patients with known and suspected MPD as identification is valuable in classification and is a potential target for signal transduction therapy.
Resumo:
BACKGROUND: Diabetic retinopathy is an important cause of visual loss. Laser photocoagulation preserves vision in diabetic retinopathy but is currently used at the stage of proliferative diabetic retinopathy (PDR).
OBJECTIVES: The primary aim was to assess the clinical effectiveness and cost-effectiveness of pan-retinal photocoagulation (PRP) given at the non-proliferative stage of diabetic retinopathy (NPDR) compared with waiting until the high-risk PDR (HR-PDR) stage was reached. There have been recent advances in laser photocoagulation techniques, and in the use of laser treatments combined with anti-vascular endothelial growth factor (VEGF) drugs or injected steroids. Our secondary questions were: (1) If PRP were to be used in NPDR, which form of laser treatment should be used? and (2) Is adjuvant therapy with intravitreal drugs clinically effective and cost-effective in PRP?
ELIGIBILITY CRITERIA: Randomised controlled trials (RCTs) for efficacy but other designs also used.
REVIEW METHODS: Systematic review and economic modelling.
RESULTS: The Early Treatment Diabetic Retinopathy Study (ETDRS), published in 1991, was the only trial designed to determine the best time to initiate PRP. It randomised one eye of 3711 patients with mild-to-severe NPDR or early PDR to early photocoagulation, and the other to deferral of PRP until HR-PDR developed. The risk of severe visual loss after 5 years for eyes assigned to PRP for NPDR or early PDR compared with deferral of PRP was reduced by 23% (relative risk 0.77, 99% confidence interval 0.56 to 1.06). However, the ETDRS did not provide results separately for NPDR and early PDR. In economic modelling, the base case found that early PRP could be more effective and less costly than deferred PRP. Sensitivity analyses gave similar results, with early PRP continuing to dominate or having low incremental cost-effectiveness ratio. However, there are substantial uncertainties. For our secondary aims we found 12 trials of lasers in DR, with 982 patients in total, ranging from 40 to 150. Most were in PDR but five included some patients with severe NPDR. Three compared multi-spot pattern lasers against argon laser. RCTs comparing laser applied in a lighter manner (less-intensive burns) with conventional methods (more intense burns) reported little difference in efficacy but fewer adverse effects. One RCT suggested that selective laser treatment targeting only ischaemic areas was effective. Observational studies showed that the most important adverse effect of PRP was macular oedema (MO), which can cause visual impairment, usually temporary. Ten trials of laser and anti-VEGF or steroid drug combinations were consistent in reporting a reduction in risk of PRP-induced MO.
LIMITATION: The current evidence is insufficient to recommend PRP for severe NPDR.
CONCLUSIONS: There is, as yet, no convincing evidence that modern laser systems are more effective than the argon laser used in ETDRS, but they appear to have fewer adverse effects. We recommend a trial of PRP for severe NPDR and early PDR compared with deferring PRP till the HR-PDR stage. The trial would use modern laser technologies, and investigate the value adjuvant prophylactic anti-VEGF or steroid drugs.
STUDY REGISTRATION: This study is registered as PROSPERO CRD42013005408.
FUNDING: The National Institute for Health Research Health Technology Assessment programme.
Resumo:
PURPOSE: It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats.
METHODS: Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS).
RESULTS: Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors.
CONCLUSIONS: The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.
Resumo:
Current therapies that target vascular endothelial growth factor (VEGF) have become a mainstream therapy for the management of diabetic macular oedema. The treatment involves monthly repeated intravitreal injections of VEGF inhibitors. VEGF is an important growth factor for many retinal cells, including different types of neurons. In this study, we investigated the adverse effect of multiple intravitreal anti-VEGF injections (200 ng/μl/eye anti-mouse VEGF164, once every 2 weeks totalling 5-6 injections) to retinal neurons in Ins2(Akita) diabetic mice. Funduscopic examination revealed the development of cotton wool spot-like lesions in anti-VEGF treated Ins2(Akita) mice after 5 injections. Histological investigation showed focal swellings of retinal nerve fibres with neurofilament disruption. Furthermore, anti-VEGF-treated Ins2(Akita) mice exhibited impaired electroretinographic responses, characterized by reduced scotopic a- and b-wave and oscillatory potentials. Immunofluorescent staining revealed impairment of photoreceptors, disruptions of synaptic structures and loss of amacrine and retinal ganglion cells in anti-VEGF treated Ins2(Akita) mice. Anti-VEGF-treated WT mice also presented mild amacrine and ganglion cell death, but no overt abnormalities in photoreceptors and synaptic structures. At the vascular level, exacerbated albumin leakage was observed in anti-VEGF injected diabetic mice. Our results suggest that sustained intraocular VEGF neutralization induces retinal neurodegeneration and vascular damage in the diabetic eye.
Resumo:
The lymphocyte adaptor protein (LNK) is one of a family of adaptor proteins involved cell signalling and control of B cell populations. It has a critical role in regulation of signalling in hematopoiesis. Lnk negatively regulates cytokine initiated cell signalling and it functions as a negative regulator of the mutant protein in myeloproliferative neoplasms JAK2V617F. A number of mutations in LNK have been described in a variety of myeloproliferative neoplasms some of which have been demonstrated to cause increased cellular proliferation. The majority of mutations occur in exon 2. In a small number of cases idiopathic erythrocytosis with subnormal erythropoietin levels LNK mutations have been found which may account for the clinical phenotype. Thus investigation for LNK mutations should be considered in the investigation of idiopathic erythrocytosis and perhaps other myeloproliferative neoplasms.
Resumo:
OBJECTIVE: To assess the impact of laser peripheral iridotomy (LPI) on forward-scatter of light and subjective visual symptoms and to identify LPI parameters influencing these phenomena. DESIGN: Cohort study derived from a randomized trial, using an external control group. PARTICIPANTS: Chinese subjects initially aged 50 or older and 70 years or younger with bilateral narrow angles undergoing LPI in 1 eye selected at random, and age- and gender-matched controls. METHODS: Eighteen months after laser, LPI-treated subjects underwent digital iris photography and photogrammetry to characterize the size and location of the LPI, Lens Opacity Classification System III cataract grading, and measurement of retinal straylight (C-Quant; OCULUS, Wetzlar, Germany) in the treated and untreated eyes and completed a visual symptoms questionnaire. Controls answered the questionnaire and underwent straylight measurement and (in a random one-sixth sample) cataract grading. MAIN OUTCOME MEASURES: Retinal straylight levels and subjective visual symptoms. RESULTS: Among 230 LPI-treated subjects (121 [58.8%] with LPI totally covered by the lid, 43 [19.8%] with LPI partly covered by the lid, 53 [24.4%] with LPI uncovered by the lid), 217 (94.3%) completed all testing, as did 250 (93.3%) of 268 controls. Age, gender, and prevalence of visual symptoms did not differ between treated subjects and controls, although nuclear (P<0.01) and cortical (P = 0.03) cataract were less common among controls. Neither presenting visual acuity nor straylight score differed between the treated and untreated eyes among all treated persons, nor among those (n = 96) with LPI partially or totally uncovered. Prevalence of subjective glare did not differ significantly between participants with totally covered LPI (6.61%; 95% confidence interval [CI], 3.39%-12.5%), partially covered LPI (11.6%; 95% CI, 5.07%-24.5%), or totally uncovered LPI (9.43%; 95% CI, 4.10%-10.3%). In regression models, only worse cortical cataract grade (P = 0.01) was associated significantly with straylight score, and no predictors were associated with subjective glare. None of the LPI size or location parameters were associated with straylight or subjective symptoms. CONCLUSIONS: These results suggests that LPI is safe regarding measures of straylight and visual symptoms. This randomized design provides strong evidence that treatment programs for narrow angles would be unlikely to result in important medium-term visual disability.