351 resultados para Retinal metabolism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Chronic kidney disease (CKD) and hypertension are global public health problems associated with considerable morbidity, premature mortality and attendant healthcare costs. Previous studies have highlighted that non-invasive examination of the retinal microcirculation can detect microvascular pathology that is associated with systemic disorders of the circulatory system such as hypertension. We examined the associations between retinal vessel caliber (RVC) and fractal dimension (DF), with both hypertension and CKD in elderly Irish nuns.

Methods: Data from 1233 participants in the cross-sectional observational Irish Nun Eye Study (INES) were assessed from digital photographs with a standardized protocol using computer-assisted software. Multivariate regression analyses were used to assess associations with hypertension and CKD, with adjustment for age, body mass index (BMI), refraction, fellow eye RVC, smoking, alcohol consumption, ischemic heart disease (IHD), cerebrovascular accident (CVA), diabetes and medication use.

Results: In total, 1122 (91%) participants (mean age: 76.3 [range: 56-100] years) had gradable retinal images of sufficient quality for blood vessel assessment. Hypertension was significantly associated with a narrower central retinal arteriolar equivalent (CRAE) in a fully adjusted analysis (P = 0.002; effect size= -2.16 μm; 95% confidence intervals [CI]: -3.51, -0.81 μm). No significant associations between other retinal vascular parameters and hypertension or between any retinal vascular parameters and CKD were found.

Conclusions: Individuals with hypertension have significantly narrower retinal arterioles which may afford an earlier opportunity for tailored prevention and treatment options to optimize the structure and function of the microvasculature, providing additional clinical utility. No significant associations between retinal vascular parameters and CKD were detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevation of arsenic levels in soils causes considerable concern with respect to plant uptake and subsequent entry into wildlife and human food chains, Arsenic speciation in the environment is complex, existing in both inorganic and organic forms, with interconversion between species regulated by biotic and abiotic processes. To understand and manage the risks posed by soil arsenic it is essential to know how arsenic is taken up by the roots and metabolized within plants. Some plant species exhibit phenotypic variation in response to arsenic species, which helps us to understand the toxicity of arsenic and the way in which plants have evolved arsenic resistances. This knowledge, for example, could be used produce plant cultivars that are more arsenic resistant or that have reduced arsenic uptake. This review synthesizes current knowledge on arsenic uptake, metabolism and toxicity for arsenic resistant and nonresistant plants, including the recently discovered phenomenon of arsenic hyperaccumulation in certain fern species. The reasons why plants accumulate and metabolize arsenic are considered in an evolutionary context. © New Phytologist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumour cells sustain their high proliferation rate through metabolic reprogramming, whereby cellular metabolism shifts from oxidative phosphorylation to aerobic glycolysis, even under normal oxygen levels. Hypoxia-inducible factor 1A (HIF1A) is a major regulator of this process, but its activation under normoxic conditions, termed pseudohypoxia, is not well documented. Here, using an integrative approach combining the first genome-wide mapping of chromatin binding for an endocytic adaptor, ARRB1, both in vitro and in vivo with gene expression profiling, we demonstrate that nuclear ARRB1 contributes to this metabolic shift in prostate cancer cells via regulation of HIF1A transcriptional activity under normoxic conditions through regulation of succinate dehydrogenase A (SDHA) and fumarate hydratase (FH) expression. ARRB1-induced pseudohypoxia may facilitate adaptation of cancer cells to growth in the harsh conditions that are frequently encountered within solid tumours. Our study is the first example of an endocytic adaptor protein regulating metabolic pathways. It implicates ARRB1 as a potential tumour promoter in prostate cancer and highlights the importance of metabolic alterations in prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic changes are a well-described hallmark of cancer and are responses to changes in the activity of diverse oncogenes and tumour suppressors. For example, steroid hormone biosynthesis is intimately associated with changes in lipid metabolism and represents a therapeutic intervention point in the treatment of prostate cancer (PCa). Both prostate gland development and tumorigenesis rely on the activity of a steroid hormone receptor family member, the androgen receptor (AR). Recent studies have sought to define the biological effect of the AR on PCa by defining the whole-genome binding sites and gene networks that are regulated by the AR. These studies have provided the first systematic evidence that the AR influences metabolism and biosynthesis at key regulatory steps within pathways that have also been defined as points of influence for other oncogenes, including c-Myc, p53 and hypoxia-inducible factor 1α, in other cancers. The success of interfering with these pathways in a therapeutic setting will, however, hinge on our ability to manage the concomitant stress and survival responses induced by such treatments and to define appropriate therapeutic windows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The androgen receptor (AR) is a key regulator of prostate growth and the principal drug target for the treatment of prostate cancer. Previous studies have mapped AR targets and identified some candidates which may contribute to cancer progression, but did not characterize AR biology in an integrated manner. In this study, we took an interdisciplinary approach, integrating detailed genomic studies with metabolomic profiling and identify an anabolic transcriptional network involving AR as the core regulator. Restricting flux through anabolic pathways is an attractive approach to deprive tumours of the building blocks needed to sustain tumour growth. Therefore, we searched for targets of the AR that may contribute to these anabolic processes and could be amenable to therapeutic intervention by virtue of differential expression in prostate tumours. This highlighted calcium/calmodulin-dependent protein kinase kinase 2, which we show is overexpressed in prostate cancer and regulates cancer cell growth via its unexpected role as a hormone-dependent modulator of anabolic metabolism. In conclusion, it is possible to progress from transcriptional studies to a promising therapeutic target by taking an unbiased interdisciplinary approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For over 40 years, the fluoropyrimidine 5-fluorouracil (5-FU) has remained the central agent in therapeutic regimens employed in the treatment of colorectal cancer and is frequently combined with the DNA-damaging agents oxaliplatin and irinotecan, increasing response rates and improving overall survival. However, many patients will derive little or no benefit from treatment, highlighting the need to identify novel therapeutic targets to improve the efficacy of current 5-FU-based chemotherapeutic strategies. dUTP nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and PPi, providing substrate for thymidylate synthase (TS) and DNA synthesis and repair. Although dUTP is a normal intermediate in DNA synthesis, its accumulation and misincorporation into DNA as uracil is lethal. Importantly, uracil misincorporation represents an important mechanism of cytotoxicity induced by the TS-targeted class of chemotherapeutic agents including 5-FU. A growing body of evidence suggests that dUTPase is an important mediator of response to TS-targeted agents. In this article, we present further evidence showing that elevated expression of dUTPase can protect breast cancer cells from the expansion of the intracellular uracil pool, translating to reduced growth inhibition following treatment with 5-FU. We therefore report the implementation of in silico drug development techniques to identify and develop small-molecule inhibitors of dUTPase. As 5-FU and the oral 5-FU prodrug capecitabine remain central agents in the treatment of a variety of malignancies, the clinical utility of a small-molecule inhibitor to dUTPase represents a viable strategy to improve the clinical efficacy of these mainstay chemotherapeutic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Diabetic retinopathy is an important cause of visual loss. Laser photocoagulation preserves vision in diabetic retinopathy but is currently used at the stage of proliferative diabetic retinopathy (PDR).

OBJECTIVES: The primary aim was to assess the clinical effectiveness and cost-effectiveness of pan-retinal photocoagulation (PRP) given at the non-proliferative stage of diabetic retinopathy (NPDR) compared with waiting until the high-risk PDR (HR-PDR) stage was reached. There have been recent advances in laser photocoagulation techniques, and in the use of laser treatments combined with anti-vascular endothelial growth factor (VEGF) drugs or injected steroids. Our secondary questions were: (1) If PRP were to be used in NPDR, which form of laser treatment should be used? and (2) Is adjuvant therapy with intravitreal drugs clinically effective and cost-effective in PRP?

ELIGIBILITY CRITERIA: Randomised controlled trials (RCTs) for efficacy but other designs also used.


REVIEW METHODS: Systematic review and economic modelling.

RESULTS: The Early Treatment Diabetic Retinopathy Study (ETDRS), published in 1991, was the only trial designed to determine the best time to initiate PRP. It randomised one eye of 3711 patients with mild-to-severe NPDR or early PDR to early photocoagulation, and the other to deferral of PRP until HR-PDR developed. The risk of severe visual loss after 5 years for eyes assigned to PRP for NPDR or early PDR compared with deferral of PRP was reduced by 23% (relative risk 0.77, 99% confidence interval 0.56 to 1.06). However, the ETDRS did not provide results separately for NPDR and early PDR. In economic modelling, the base case found that early PRP could be more effective and less costly than deferred PRP. Sensitivity analyses gave similar results, with early PRP continuing to dominate or having low incremental cost-effectiveness ratio. However, there are substantial uncertainties. For our secondary aims we found 12 trials of lasers in DR, with 982 patients in total, ranging from 40 to 150. Most were in PDR but five included some patients with severe NPDR. Three compared multi-spot pattern lasers against argon laser. RCTs comparing laser applied in a lighter manner (less-intensive burns) with conventional methods (more intense burns) reported little difference in efficacy but fewer adverse effects. One RCT suggested that selective laser treatment targeting only ischaemic areas was effective. Observational studies showed that the most important adverse effect of PRP was macular oedema (MO), which can cause visual impairment, usually temporary. Ten trials of laser and anti-VEGF or steroid drug combinations were consistent in reporting a reduction in risk of PRP-induced MO.

LIMITATION: The current evidence is insufficient to recommend PRP for severe NPDR.

CONCLUSIONS: There is, as yet, no convincing evidence that modern laser systems are more effective than the argon laser used in ETDRS, but they appear to have fewer adverse effects. We recommend a trial of PRP for severe NPDR and early PDR compared with deferring PRP till the HR-PDR stage. The trial would use modern laser technologies, and investigate the value adjuvant prophylactic anti-VEGF or steroid drugs.

STUDY REGISTRATION: This study is registered as PROSPERO CRD42013005408.

FUNDING: The National Institute for Health Research Health Technology Assessment programme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current therapies that target vascular endothelial growth factor (VEGF) have become a mainstream therapy for the management of diabetic macular oedema. The treatment involves monthly repeated intravitreal injections of VEGF inhibitors. VEGF is an important growth factor for many retinal cells, including different types of neurons. In this study, we investigated the adverse effect of multiple intravitreal anti-VEGF injections (200 ng/μl/eye anti-mouse VEGF164, once every 2 weeks totalling 5-6 injections) to retinal neurons in Ins2(Akita) diabetic mice. Funduscopic examination revealed the development of cotton wool spot-like lesions in anti-VEGF treated Ins2(Akita) mice after 5 injections. Histological investigation showed focal swellings of retinal nerve fibres with neurofilament disruption. Furthermore, anti-VEGF-treated Ins2(Akita) mice exhibited impaired electroretinographic responses, characterized by reduced scotopic a- and b-wave and oscillatory potentials. Immunofluorescent staining revealed impairment of photoreceptors, disruptions of synaptic structures and loss of amacrine and retinal ganglion cells in anti-VEGF treated Ins2(Akita) mice. Anti-VEGF-treated WT mice also presented mild amacrine and ganglion cell death, but no overt abnormalities in photoreceptors and synaptic structures. At the vascular level, exacerbated albumin leakage was observed in anti-VEGF injected diabetic mice. Our results suggest that sustained intraocular VEGF neutralization induces retinal neurodegeneration and vascular damage in the diabetic eye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To assess the impact of laser peripheral iridotomy (LPI) on forward-scatter of light and subjective visual symptoms and to identify LPI parameters influencing these phenomena. DESIGN: Cohort study derived from a randomized trial, using an external control group. PARTICIPANTS: Chinese subjects initially aged 50 or older and 70 years or younger with bilateral narrow angles undergoing LPI in 1 eye selected at random, and age- and gender-matched controls. METHODS: Eighteen months after laser, LPI-treated subjects underwent digital iris photography and photogrammetry to characterize the size and location of the LPI, Lens Opacity Classification System III cataract grading, and measurement of retinal straylight (C-Quant; OCULUS, Wetzlar, Germany) in the treated and untreated eyes and completed a visual symptoms questionnaire. Controls answered the questionnaire and underwent straylight measurement and (in a random one-sixth sample) cataract grading. MAIN OUTCOME MEASURES: Retinal straylight levels and subjective visual symptoms. RESULTS: Among 230 LPI-treated subjects (121 [58.8%] with LPI totally covered by the lid, 43 [19.8%] with LPI partly covered by the lid, 53 [24.4%] with LPI uncovered by the lid), 217 (94.3%) completed all testing, as did 250 (93.3%) of 268 controls. Age, gender, and prevalence of visual symptoms did not differ between treated subjects and controls, although nuclear (P<0.01) and cortical (P = 0.03) cataract were less common among controls. Neither presenting visual acuity nor straylight score differed between the treated and untreated eyes among all treated persons, nor among those (n = 96) with LPI partially or totally uncovered. Prevalence of subjective glare did not differ significantly between participants with totally covered LPI (6.61%; 95% confidence interval [CI], 3.39%-12.5%), partially covered LPI (11.6%; 95% CI, 5.07%-24.5%), or totally uncovered LPI (9.43%; 95% CI, 4.10%-10.3%). In regression models, only worse cortical cataract grade (P = 0.01) was associated significantly with straylight score, and no predictors were associated with subjective glare. None of the LPI size or location parameters were associated with straylight or subjective symptoms. CONCLUSIONS: These results suggests that LPI is safe regarding measures of straylight and visual symptoms. This randomized design provides strong evidence that treatment programs for narrow angles would be unlikely to result in important medium-term visual disability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In fluvial ecosystems mineral erosion, carbon (C) and nitrogen (N) fluxes are linked via organo-mineral complexation, where dissolved organic molecules bind to mineral surfaces. Biofilms and suspended aggregates represent major aquatic microbial lifestyles whose relative importance changes predictably through fluvial networks. We tested how organo-mineral sorption affects aquatic microbial metabolism, using organo-mineral particles containing a mix of 13C, 15N-labelled amino acids. We traced 13C and 15N retention within biofilm and suspended aggregate biomass and its mineralisation. Organo-mineral complexation restricted C and N retention within biofilms and aggregates and also their mineralisation. This reduced the efficiency with which biofilms mineralise C and N by 30 % and 6 %. By contrast, organo-minerals reduced the C and N mineralisation efficiency of suspended aggregates by 41 % and 93 %. Our findings show how organo-mineral complexation affects microbial C:N stoichiometry, potentially altering the biogeochemical fate of C and N within fluvial ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic networks are highly connected and complex, but a single enzyme, O-GlcNAc transferase (OGT) can sense the availability of metabolites and also modify target proteins. We show that inhibition of OGT activity inhibits the proliferation of prostate cancer cells, leads to sustained loss of c-MYC and suppresses the expression of CDK1, elevated expression of which predicts prostate cancer recurrence (p=0.00179). Metabolic profiling revealed decreased glucose consumption and lactate production after OGT inhibition. This decreased glycolytic activity specifically sensitized prostate cancer cells, but not cells representing normal prostate epithelium, to inhibitors of oxidative phosphorylation (rotenone and metformin). Intra-cellular alanine was depleted upon OGT inhibitor treatment. OGT inhibitor increased the expression and activity of alanine aminotransferase (GPT2), an enzyme that can be targeted with a clinically approved drug, cycloserine. Simultaneous inhibition of OGT and GPT2 inhibited cell viability and growth rate, and additionally activated a cell death response. These combinatorial effects were predominantly seen in prostate cancer cells, but not in a cell-line derived from normal prostate epithelium. Combinatorial treatments were confirmed with two inhibitors against both OGT and GPT2. Taken together, here we report the reprogramming of energy metabolism upon inhibition of OGT activity, and identify synergistically lethal combinations that are prostate cancer cell specific.