564 resultados para Planetary Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several authors have shown that precise measurements of transit time variations of exoplanets can be sensitive to other planetary bodies, such as exo-moons. In addition, the transit timing variations of the exoplanets closest to their host stars can provide tests of tidal dissipation theory. These studies, however, have not considered the effect of the host star. There is a large body of observational evidence that eclipse times of binary stars can vary dramatically due to variations in the quadrupole moment of the stars driven by stellar activity. In this paper, we investigate and estimate the likely impact such variations have on the transit times of exoplanets. We find in several cases that such variations should be detectable. In particular, the estimated period changes for WASP-18b are of the same order as those expected for tidal dissipation, even for relatively low values of the tidal dissipation parameter. The transit time variations caused by the Applegate mechanism are also of the correct magnitude and occur on time-scales such that they may be confused with variations caused by light-travel time effects due to the presence of a Jupiter-like second planet. Finally, we suggest that transiting exoplanet systems may provide a clean route (compared to binaries) to constraining the type of dynamo operating in the host star.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stellar rotation periods of 10 exoplanet host stars have been determined using newly analysed CaII H&K flux records from the Mount Wilson Observatory and Strömgren b, y photometric measurements from Tennessee State University's automatic photometric telescopes at the Fairborn Observatory. Five of the rotation periods have not previously been reported, with that of HD 130322 very strongly detected at Prot = 26.1 +/- 3.5 d. The rotation periods of five other stars have been updated using new data. We use the rotation periods to derive the line-of-sight inclinations of the stellar rotation axes, which may be used to probe theories of planet formation and evolution when combined with the planetary orbital inclination found from other methods. Finally, we estimate the masses of 14 exoplanets under the assumption that the stellar rotation axis is aligned with the orbital axis. We calculate the mass of HD 92788 b (28 MJ) to be within the low-mass brown dwarf regime and suggest that this object warrants further investigation to confirm its true nature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

All extra-solar planet masses that have been derived spectroscopically are lower limits since the inclination of the orbit to our line-of-sight is unknown except for transiting systems. In theory, however, it is possible to determine the inclination angle, i, between the rotation axis of a star and an observer's line-of-sight from measurements of the projected equatorial velocity (v sin i), the stellar rotation period (P(rot)) and the stellar radius (R(*)). For stars which host planetary systems this allows the removal of the sin i dependency of extra-solar planet masses derived from spectroscopic observations under the assumption that the planetary orbits lie perpendicular to the stellar rotation axis.
We have carried out an extensive literature search and present a catalogue of v sin i, P(rot) and R(*) estimates for stars hosting extra-solar planets. In addition, we have used Hipparcos parallaxes and the Barnes-Evans relationship to further supplement the R(*) estimates obtained from the literature. Using this catalogue, we have obtained sin i estimates using a Markov-chain Monte Carlo analysis. This technique allows proper 1 Sigma two-tailed confidence limits to be placed on the derived sin i's along with the transit probability for each planet to be determined.
While we find that a small proportion of systems yield sin i's significantly greater than 1, most likely due to poor P(rot) estimations, the large majority are acceptable. We are further encouraged by the cases where we have data on transiting systems, as the technique indicates inclinations of similar to 90 degrees and high transit probabilities. In total, we are able to estimate the true masses of 133 extra-solar planets. Of these 133 extra-solar planets, only six have revised masses that place them above the 13M(J) deuterium burning limit; four of those six extra-solar planet candidates were already suspected to lie above the deuterium burning limit before correcting their masses for the sin i dependency. Our work reveals a population of high-mass extra-solar planets with low eccentricities, and we speculate that these extra-solar planets may represent the signature of different planetary formation mechanisms at work. Finally, we discuss future observations that should improve the robustness of this technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: We report the discovery of WASP-38b, a long period transiting planet in an eccentric 6.871815 day orbit. The transit epoch is 2 455 335.92050 ± 0.00074 (HJD) and the transit duration is 4.663 h. Methods: WASP-38b's discovery was enabled due to an upgrade to the SuperWASP-North cameras. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded Teff = 6150 ± 80 K, log g = 4.3 ± 0.1, v sin i = 8.6 ± 0.4 km s-1, M_* = 1.16 ± 0.04 M? and R_* = 1.33 ± 0.03 R?, consistent with a dwarf of spectral type F8. Assuming a main-sequence mass-radius relation for the star, we fitted simultaneously the radial velocity variations and the transit light curves to estimate the orbital and planetary parameters. Results: The planet has a mass of 2.69 ± 0.06 MJup and a radius of 1.09 ± 0.03 RJup giving a density, ?p = 2.1 ± 0.1 ?J. The high precision of the eccentricity e = 0.0314 ± 0.0044 is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at 1292 ± 33 K. WASP-38b is the longest period planet found by SuperWASP-North and with a bright host star (V = 9.4 mag), is a good candidate for followup atmospheric studies. Photometry and RV data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/525/A54

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on the discovery of WASP-37b, a transiting hot Jupiter orbiting an m v = 12.7 G2-type dwarf, with a period of 3.577469 ± 0.000011 d, transit epoch T 0 = 2455338.6188 ± 0.0006 (HJD; dates throughout the paper are given in Coordinated Universal Time (UTC)), and a transit duration 0.1304+0.0018 –0.0017 d. The planetary companion has a mass M p = 1.80 ± 0.17 M J and radius R p = 1.16+0.07 –0.06 R J, yielding a mean density of 1.15+0.12 –0.15 ?J. From a spectral analysis, we find that the host star has M sstarf = 0.925 ± 0.120 M sun, R sstarf = 1.003 ± 0.053 R sun, T eff = 5800 ± 150 K, and [Fe/H] = –0.40 ± 0.12. WASP-37 is therefore one of the lowest metallicity stars to host a transiting planet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes similar to -21 to -23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O II. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe II and Si II absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by Ni-56, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the detection of microwave emission lines from the hydrocarbon anion C6H- and its parent neutral C6H in the star-forming region L1251A (in Cepheus), and the pre-stellar core L1512 (in Auriga). The carbon-chain-bearing species C4H, HC3N, HC5N, HC7N and C3S are also detected in large abundances. The observations of L1251A constitute the first detections of anions and long- chain polyynes and cyanopolyynes (with more than 5 carbon atoms) in the Cepheus Flare star- forming region, and the first detection of anions in the vicinity of a protostar outside of the Taurus molecular cloud complex, highlighting a wider importance for anions in the chemistry of star formation. Rotational excitation temperatures have been derived from the HC3N hyperfine structure lines, and are found to be 6.2 K for L1251A and 8.7 K for L1512. The anion-to-neutral ratios are 3.6% and 4.1%, respectively, which are within the range of values previously observed in the interstellar medium, and suggest a relative uniformity in the processes governing anion abundances in different dense interstellar clouds. This research contributes towards the growing body of evidence that carbon chain anions are relatively abundant in interstellar clouds throughout the Galaxy, but especially in the regions of relatively high density and high depletion surrounding pre-stellar cores and young, embedded protostars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present mid-infrared (MIR) spectroscopy of a Type II-plateau supernova, SN 2004dj, obtained with the Spitzer Space Telescope, spanning 106--1393d after explosion. MIR photometry plus optical/near-IR observations are also reported. An early-time MIR excess is attributed to emission from non-silicate dust formed within a cool dense shell (CDS). Most of the CDS dust condensed between 50d and 165d, reaching a mass of $0.3x^(-5)Msun. Throughout the observations much of the longer wavelength (>10microns) part of the continuum is explained as an IR echo from interstellar dust. The MIR excess strengthened at later times. We show that this was due to thermal emission from warm, non-silicate dust formed in the ejecta. Using optical/near-IR line-profiles and the MIR continua, we show that the dust was distributed as a disk whose radius appeared to be slowly shrinking. The disk radius may correspond to a grain destruction zone caused by a reverse shock which also heated the dust. The dust-disk lay nearly face-on, had high opacities in the optical/near-IR regions, but remained optically thin in the MIR over much of the period studied. Assuming a uniform dust density, the ejecta dust mass by 996d was 0.5+/-0.1 x 10^(-4)Msun, and exceeded 10^(-4)Msun by 1393d. For a dust density rising toward the center the limit is higher. Nevertheless, this study suggests that the amount of freshly-synthesized dust in the SN 2004dj ejecta is consistent with that found from previous studies, and adds further weight to the claim that such events could not have been major contributors to the cosmic dust budget.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing, and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared local thermodynamic equilibrium line emission spectra and compare these with recent Spitzer observations. Our results show that if H2 formation on warm grains is taken into consideration, the H2O and OH abundances in the disk surface increase significantly. We find that the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH3, CH3OH, C2H2, and sulfur-containing species are greatly enhanced by the inclusion of turbulent mixing. We demonstrate that disk winds potentially affect the disk chemistry and the resulting molecular line emission in a manner similar to that found when mixing is included.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of Ni II. Attention is expressly concentrated on the optically allowed fine-structure transitions between the 3d 9, 3d 84s, and 3d 74s 2 even parity levels and the 3d 84p and 3d 74s 4p odd parity levels. The parallel RMATRXII R-matrix package has been recently extended to allow for the inclusion of relativistic fine-structure effects. This suite of codes has been utilized in conjunction with the parallel PSTGF and PSTGICF programs in order to compute converged total collision strengths for the allowed transitions with which this study is concerned. All 113 LS terms identified with the 3d 9, 3d 84s, 3d 74s 2, 3d 84p, and 3d 74s 4p basis configurations were included in the target wavefunction representation, giving rise to a sophisticated 295 jj-level, 1930 coupled channel scattering complex. Maxwellian averaged effective collision strengths have been computed at 30 individual electron temperatures ranging from 30 to 1,000,000 K. This range comfortably encompasses all temperatures significant to astrophysical and plasma applications. The convergence of the collision strengths is exhaustively investigated and comparisons are made with previous theoretical works, where significant discrepancies exist for the majority of transitions. We conclude that intrinsic in achieving converged collision strengths and thus effective collision strengths for the allowed transitions is the combined inclusion of contributions from the (N + 1) partial waves extending to a total angular momentum value of L = 50 and further contributions from even higher partial waves accomplished by employing a "top-up" procedure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims. The aim of this study is to examine if the well-known chemical gradient in TMC-1 is reflected in the amount of rudimentary forms of carbon available in the gas-phase. As a tracer we use the CH radical which is supposed to be well correlated with carbon atoms and simple hydrocarbon ions. Methods. We observed the 9-cm ?-doubling lines of CH along the dense filament of TMC-1. The CH column densities were compared with the total H2 column densities derived using the 2MASS NIR data and previously published SCUBA maps and with OH column densities derived using previous observations with Effelsberg. We also modelled the chemical evolution of TMC-1 adopting physical conditions typical of dark clouds using the UMIST Database for Astrochemistry gas-phase reaction network to aid the interpretation of the observed OH/CH abundance ratios. Results. The CH column density has a clear peak in the vicinity of the cyanopolyyne maximum of TMC-1. The fractional CH abundance relative to H2 increases steadily from the northwestern end of the filament where it lies around 1.0 × 10-8 , to the southeast where it reaches a value of 2.0 × 10-8. The OH and CH column densities are well correlated, and we obtained OH/CH abundance ratios of ~16–20. These values are clearly larger than what has been measured recently in diffuse interstellar gas and is likely to be related to C to CO conversion at higher densities. The good correlation between CH and OH can be explained by similar production and destruction pathways. We suggest that the observed CH and OH abundance gradients are mainly due to enhanced abundances in a low-density envelope which becomes more prominent in the southeastern part and seems to continue beyond the dense filament. Conclusions. An extensive envelope probably signifies an early stage of dynamical evolution, and conforms with the detection of a large CH abundance in the southeastern part of the cloud. The implied presence of other simple forms of carbon in the gas phase provides a natural explanation for the observation of “early-type” molecules in this region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an updated cumulative size distribution (CSD) for Jupiter Family comet (JFC) nuclei, including a rigorous assessment of the uncertainty on the slope of the CSD. The CSD is expressed as a power law, N(>rN) ?r-qN, where rN is the radius of the nuclei and q is the slope. We include a large number of optical observations published by us and others since the comprehensive review in the Comets II book, and make use of an improved fitting method. We assess the uncertainty on the CSD due to all of the unknowns and uncertainties involved (photometric uncertainty, assumed phase function, albedo and shape of the nucleus) by means of Monte Carlo simulations. In order to do this we also briefly review the current measurements of these parameters for JFCs. Our final CSD has a slope q= 1.92 ± 0.20 for nuclei with radius rN= 1.25 km.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. Rotational mixing in massive stars is a widely applied concept, with far-reaching consequences for stellar evolution, nucleosynthesis, and stellar explosions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The VLT-FLAMES Tarantula Survey (VFTS) is an ESO Large Programme that has obtained multi-epoch optical spectroscopy of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). Here we introduce our scientific motivations and give an overview of the survey targets, including optical and near-infrared photometry and comprehensive details of the data reduction. One of the principal objectives was to detect massive binary systems via variations in their radial velocities, thus shaping the multi-epoch observing strategy. Spectral classifications are given for the massive emission-line stars observed by the survey, including the discovery of a new Wolf-Rayet star (VFTS 682, classified as WN5h), 2' to the northeast of R136. To illustrate the diversity of objects encompassed by the survey, we investigate the spectral properties of sixteen targets identified by Gruendl & Chu from Spitzer photometry as candidate young stellar objects or stars with notable mid-infrared excesses. Detailed spectral classification and quantitative analysis of the O- and B-type stars in the VFTS sample, paying particular attention to the effects of rotational mixing and binarity, will be presented in a series of future articles to address fundamental questions in both stellar and cluster evolution.