401 resultados para room temperature ionic liquids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanistic analysis of the reaction between elemental sulfur or selenium and 1,3-dialkylimidazolium acetate ionic liquids, in the absence of an external base or solvent, affords evidence for the equilibrium presence of carbene species in these ionic liquids. It demonstrates the potential to control, through anion selection, the concentration of carbene in stable ionic liquids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Gutmann Acceptor Number (AN), which is a quantitative measure of Lewis acidity, has been estimated using the P-31 NMR chemical shift of a probe molecule, triethylphosphine oxide, for a range of chlorometallate(III) ionic liquids, based on Group 13 metals (aluminium(III), gallium(III) and indium(III)) and the 1-octyl-3-methylimidazolium cation, at different compositions. The results were interpreted in terms of extant speciation studies of chlorometallate(III) ionic liquids, and compared with a range of standard molecular solvents and acids. The value of these data were illustrated in terms of the selection of appropriate ionic liquids for specific applications.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel, phosphine oxide functionalised ionic liquids have been synthesised and their application as tuneable lanthanide complexing agents is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When biological matter is subjected to ionizing radiation, a wealth of secondary low-energy (<20 eV) electrons are produced. These electrons propagate inelastically, losing energy to the medium until they reach energies low enough to localize in regions of high electron affinity. We have recently shown that in fully solvated DNA fragments, nucleobases are particularly attractive for such excess electrons. The next question is what is their longer-term effect on DNA. It has been advocated that they can lead to strand breaks by cleavage of the phosphodiester C-3'-O-3' bond. Here we present a first-principles study of free energy barriers for the cleavage of this bond in fully solvated nucleotides. We have found that except for dAMP, the barriers are on the order of 6 kcal/mol, suggesting that bond cleavage is a regular feature at 300 K. Such low barriers are possible only as a result of solvent and thermal fluctuations. These findings support the notion that low-energy electrons can indeed lead to strand breaks in DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using in situ viscosity measurement, the rate of cellulose dissolution in a number of ionic liquids has been determined allowing their performance as solvents to be quantitatively assessed. 1-Butyl-3-methylimidazolium ethanoate was shown to dissolve cellulose faster than analogous ionic liquids with chloride or dimethylphosphate anions. Analysis of the data highlights the influence of both anion basicity and relative concentration on the rate of dissolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complementary computational and experimental study of the reactivity of Lewis acidic CrCl2, CuCl2 and FeCl2 catalysts towards glucose activation in dialkylimidazolium chloride ionic liquids is performed. The selective dehydration of glucose to 5-hydroxymethylfurfural (HMF) proceeds through the intermediate formation of fructose. Although chromium(II) and copper(II) chlorides are able to dehydrate fructose with high HMF selectivity, reasonable HMF yields from glucose are only obtained with CrCl2 as the catalyst. Glucose conversion by CuCl2 is not selective, while FeCl2 catalyst does not activate sugar molecules. These differences in reactivity are rationalized on the basis of in situ X-ray absorption spectroscopy measurements and the results of density functional theory calculations. The reactivity in glucose dehydration and HMF selectivity are determined by the behavior of the ionic liquid-mediated Lewis acid catalysts towards the initial activation of the sugar molecules. The formation of a coordination complex between the Lewis acidic Cr2+ center and glucose directs glucose transformation into fructose. For Cu2+ the direct coordination of sugar to the copper(II) chloride complex is unfavorable. Glucose deprotonation by a mobile Cl- ligand in the CuCl42- complex initiates the nonselective conversion. In the course of the reaction the Cu2+ ions are reduced to Cu+. Both paths are prohibited for the FeCl2 catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (MNPs) have been reproducibly obtained by facile, rapid (3 min), and energysaving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180–2508C, 6–12 h) of [Mx(CO)y] in ILs. The MWIobtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active
and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product)(mol Ru)1h1 and 884 (mol product)(molRh)1h1 and give almost quantitative conversion within 2 h at 10 bar H2 and 908C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of RuNPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extraction of uranium(VI) from aqueous nitric acid solutions by tributylphosphate {TBP; 30%(v/v)} dissolved in the ionic liquid 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide was investigated. The experiments were performed in a Teflon microchannel of 0.5 mm internal diameter, while the dioxouranium(VI) concentrations in the aqueous and the ionic liquid phases were determined by UV-Vis spectroscopy. The effects of initial nitric acid concentration (0.01-3 M), residence time, and phase flow rate ratio were studied. It was found that, with increasing nitric acid concentration, the percentage of dioxouranium(VI) extracted decreased and then increased again, while the extraction efficiency followed a slightly different trend. Overall mass transfer coefficients varied between 0.049 s and 0.312 s . © 2012 Elsevier B.V. All rights reserved.