317 resultados para Titânio c.p.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Markov Decision Processes (MDPs) are extensively used to encode sequences of decisions with probabilistic effects. Markov Decision Processes with Imprecise Probabilities (MDPIPs) encode sequences of decisions whose effects are modeled using sets of probability distributions. In this paper we examine the computation of Γ-maximin policies for MDPIPs using multilinear and integer programming. We discuss the application of our algorithms to “factored” models and to a recent proposal, Markov Decision Processes with Set-valued Transitions (MDPSTs), that unifies the fields of probabilistic and “nondeterministic” planning in artificial intelligence research. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Partially ordered preferences generally lead to choices that do not abide by standard expected utility guidelines; often such preferences are revealed by imprecision in probability values. We investigate five criteria for strategy selection in decision trees with imprecision in probabilities: “extensive” Γ-maximin and Γ-maximax, interval dominance, maximality and E-admissibility. We present algorithms that generate strategies for all these criteria; our main contribution is an algorithm for Eadmissibility that runs over admissible strategies rather than over sets of probability distributions.