462 resultados para Mas receptor
Resumo:
Patients attending for diagnostic oesophagogastroduodenoscopy (OGD) for dyspeptic symptoms are often receiving acid-suppression therapy that has not been discontinued prior to endoscopy, and this may reduce the diagnostic yield of endoscopy. The aim of this study was to compare the diagnostic yield of OGD in uncomplicated dyspepsia in patients receiving no medication, those receiving acid-suppression therapy, and those receiving nonsteroidal anti-inflammatory drugs (NSAIDs) at the time of endoscopy.
Resumo:
A survey was made of patients receiving H2-receptor antagonists in a group practice serving 8600 patients. Two hundred and twelve patients (2%) who had received at least one prescription for H2 antagonists in a 12 month period were identified. When compared with the practice population, men and patients over 50 years old were more likely to be taking these drugs (P less than 0.01 and P less than 0.001, respectively). One hundred and fifty-seven patients (74%) were investigated before commencing therapy; 114 (73%) of these patients were investigated via the hospital outpatient department, despite the general practitioners having full open access to barium meals. Only 23 (15%) of the patients investigated were found to have no active pathology. Twenty-nine (14%) of the 212 study patients had received one or more gastrointestinal investigations in the 18 months subsequent to starting H2-antagonist therapy. Twenty-five of these patients had also received an investigation before starting therapy. One hundred and eleven patients (52%) had had their H2 antagonist therapy initiated by their general practitioner.
Resumo:
The epsilon-4 allele of apolipoprotein E (APOE) is associated with increased risk of Alzheimer's disease (AD), but the pathogenic mechanism is unknown. The 5-repeat allele of a CGG repeat polymorphism in the 5' untranslated region of the very low-density lipoprotein receptor (VLDL-R) gene, a receptor for apoE, has been found to be associated with increased risk of AD in a Japanese population. Other groups have been unable to replicate this in American Caucasian populations. A case-control study utilizing a clinically well-defined group of late-onset AD patients (n = 108) and age- and sex-matched control subjects (n = 108) from Northern Ireland was performed to test this association in a relatively homogeneous population. The 9,9 genotype of the VLDL-R was found to be significantly increased in patients compared to controls (P = 0.003; Pcorr = 0.035), leading to an increased risk of AD to subjects with this genotype (OR = 3.9; 95% CI, 1.52-11.25). In contrast to results from the Japanese study, the 5-repeat allele was found to be significantly reduced in the patient group when compared to controls (P = 0.008; Pcorr = 0.047). The results from this study suggest that individuals who have the 9,9 genotype of the VLDL-R gene are at increased risk of AD in Northern Ireland.
Resumo:
BRCA1 encodes a tumour suppressor protein that plays pivotal roles in homologous recombination (HR) DNA repair, cell-cycle checkpoints, and transcriptional regulation. BRCA1 germline mutations confer a high risk of early-onset breast and ovarian cancer. In more than 80% of cases, tumours arising in BRCA1 germline mutation carriers are oestrogen receptor (ER)-negative; however, up to 15% are ER-positive. It has been suggested that BRCA1 ER-positive breast cancers constitute sporadic cancers arising in the context of a BRCA1 germline mutation rather than being causally related to BRCA1 loss-of-function. Whole-genome massively parallel sequencing of ER-positive and ER-negative BRCA1 breast cancers, and their respective germline DNAs, was used to characterize the genetic landscape of BRCA1 cancers at base-pair resolution. Only BRCA1 germline mutations, somatic loss of the wild-type allele, and TP53 somatic mutations were recurrently found in the index cases. BRCA1 breast cancers displayed a mutational signature consistent with that caused by lack of HR DNA repair in both ER-positive and ER-negative cases. Sequencing analysis of independent cohorts of hereditary BRCA1 and sporadic non-BRCA1 breast cancers for the presence of recurrent pathogenic mutations and/or homozygous deletions found in the index cases revealed that DAPK3, TMEM135, KIAA1797, PDE4D, and GATA4 are potential additional drivers of breast cancers. This study demonstrates that BRCA1 pathogenic germline mutations coupled with somatic loss of the wild-type allele are not sufficient for hereditary breast cancers to display an ER-negative phenotype, and has led to the identification of three potential novel breast cancer genes (ie DAPK3, TMEM135, and GATA4).
Resumo:
The transient receptor potential ankyrin 1 (TRPA1) channel, localized to airway sensory nerves, has been proposed to mediate airway inflammation evoked by allergen and cigarette smoke (CS) in rodents, via a neurogenic mechanism. However the limited clinical evidence for the role of neurogenic inflammation in asthma or chronic obstructive pulmonary disease raises an alternative possibility that airway inflammation is promoted by non-neuronal TRPA1.
Resumo:
Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R silenced worms also display an increase in migration rate. This work demonstrates that Gp30 flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida, and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR. © 2013 Atkinson et al.
Resumo:
The innate immune response to bacterial infection is mediated through Toll-like receptors (TLRs), which trigger tightly regulated signaling cascades through transcription factors including NF-?B. LPS activation of TLR4 triggers internalization of the receptor-ligand complex which is directed toward lysosomal degradation or endocytic recycling. Cystic fibrosis (CF) patients display a robust and uncontrolled inflammatory response to bacterial infection, suggesting a defect in regulation. This study examined the intracellular trafficking of TLR4 in CF and non-CF airway epithelial cells following stimulation with LPS. We employed cells lines [16hBE14o-, CFBE41o- (CF), and CFTR-complemented CFBE41o-] and confirmed selected experiments in primary nasal epithelial cells from non-CF controls and CF patients (F508del homozygous). In control cells, TLR4 expression (surface and cytoplasmic) was reduced after LPS stimulation but remained unchanged in CF cells and was accompanied by a heightened inflammatory response 24 h after stimulation. All cells expressed markers of the early (EEA1) and late (Rab7b) endosomes at basal levels. However, only CF cells displayed persistent expression of Rab7b following LPS stimulation. Rab7 variants may directly internalize bacteria to the Golgi for recycling or to the lysosome for degradation. TLR4 colocalized with the lysosomal marker LAMP1 in 16 hBE14o- cells, suggesting that TLR4 is targeted for lysosomal degradation in these cells. However, this colocalization was not observed in CFBE41o- cells, where persistent expression of Rab7 and release of proinflammatory cytokines was detected. Consistent with the apparent inability of CF cells to target TLR4 toward the lysosome for degradation, we observed persistent surface and cytoplasmic expression of this pathogen recognition receptor. This defect may account for the prolonged cycle of chronic inflammation associated with CF.
Resumo:
Several authors have shown that neutrophil generation of reactive oxygen species (ROS) declines with advancing age. Similar changes have also been suggested in monocytes. In both cases alterations in second messenger activity have been implicated as the most likely explanation for these observations. The aim of this study was to investigate the effect of age on phagocyte ROS generation, stimulated by the direct activation of protein kinase C (PKC). Venous blood was drawn from normal healthy subjects, cells were separated on a double density gradient into mononuclear and polymorphonuclear (pmn) cells. Phorbol myristate acetate (PMA) was employed as a cell stimulus. Superoxide generation was measured by cytochrome c reduction and myeloperoxidase (MPO) products by measurement of peak luminol chemiluminescence (CL). Fifty-eight subjects, 25 males and 33 females, were studied, median age 49 years (range 26-88 years). Polymorphonuclear cell superoxide generation was significantly higher in males and there was a trend towards higher pmn MPO product generation in males. Using Spearman's ranked correlation coefficient, monocyte superoxide generation was negatively correlated with age (r = -0.473, P <0.001). No changes in the generation of MPO products was found. There were also trends towards a negative correlation of pmn cytochrome c reduction and peak luminol CL with age in males but not females. Since PMA directly activates protein kinase C, reduced monocyte superoxide generation with increasing age appears to be related to alterations in the ROS generating system downstream of the cell receptor. Impaired monocyte superoxide generation may have implications for non-specific defence against certain infections and early tumour growth in the elderly. Factors underlying these changes in monocyte function therefore require further study.
Resumo:
In this study, the changes in some of the cellular components of the immune system and the activity of the cytokine interleukin 2, important for immune activation and lymphocyte proliferation, were measured in a large cross-sectional study of all age groups including octogenarian and nonagenarian subjects. In 206 apparently well community-living subjects, the absolute lymphocyte count and T and B cell numbers fell a little in old and very old subjects. Within the T cell compartment, helper/inducer CD4+ T cells, together with their subsets identified as 'naive' (CD4+/CD45RA+) and 'memory' (CD4+/CD45RO+) cells, also showed a decline with increased age. The suppressor/cytotoxic CD8+ subset showed no age-related change. The levels of the cytokine interleukin 2 were very low in octogenarian and nonagenarian subjects, while the soluble interleukin 2 receptor levels increased with increasing age. The interleukin 2 levels were associated with number and percentage of the 'memory' (CD4+/CD45RO+) subset of T cells which mediates the host response to previously met antigens. Since the interleukin 2 values were very low in the oldest groups and were associated with a reduced 'memory' (CD4+/CD45RO+) compartment, this suggests a possible mechanism of why the very elderly subject is more susceptible to morbidity and mortality from infectious or other agents.
Resumo:
Using 1-(4-styryl)-3-(3-nitrophenyl)urea as host monomer for the imprinting of Z-(D or L)-Glu, a polymeric receptor exhibiting strong enantioselectivity and a change in color intensity upon binding of the guest was obtained.
Resumo:
Seven-transmembrane receptors (7TMRs), also termed G protein-coupled receptors (GPCRs), form the largest class of cell surface membrane receptors, involving several hundred members in the human genome. Near 30% of marketed pharmacological agents target 7TMRs. 7TMRs adopt multiple conformations upon agonist binding. Biased agonists, in contrast to non-biased agonists, are believed to stabilize conformations preferentially activating either G-protein- or ß-arrestin-dependent signalling pathways. However, proof that cognate conformations of receptors display structural differences within their binding site where biased agonism initiates, are still lacking. Here, we show that a non-biased agonist, cholecystokinin (CCK) induces conformational states of the CCK2R activating Gq-protein-dependent pathway (CCK2RG) or recruiting ß-arrestin2 (CCK2Rß) that are pharmacologically and structurally distinct. Two structurally unrelated antagonists competitively inhibited both pathways. A third ligand (GV150,013X), acted as a high affinity competitive antagonist on CCK2RG but was nearly inefficient as inhibitor of CCK2Rß. Several structural elements on both GV150,013X and in CCK2R binding cavity, which hinder binding of GV150,013X only to the CCK2Rß were identified. At last, proximity between two conserved amino acids from transmembrane helices 3 and 7 interacting through sulphur-aromatic interaction was shown to be crucial for selective stabilization of the CCK2Rß state. These data establish structural evidences for distinct conformations of a 7TMR associated with ß-arrestin-2 recruitment or G-protein coupling and validate relevance of the design of biased ligands able to selectively target each functional conformation of 7TMRs.