561 resultados para Data portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel method of audio-visual feature-level fusion for person identification where both the speech and facial modalities may be corrupted, and there is a lack of prior knowledge about the corruption. Furthermore, we assume there are limited amount of training data for each modality (e.g., a short training speech segment and a single training facial image for each person). A new multimodal feature representation and a modified cosine similarity are introduced to combine and compare bimodal features with limited training data, as well as vastly differing data rates and feature sizes. Optimal feature selection and multicondition training are used to reduce the mismatch between training and testing, thereby making the system robust to unknown bimodal corruption. Experiments have been carried out on a bimodal dataset created from the SPIDRE speaker recognition database and AR face recognition database with variable noise corruption of speech and occlusion in the face images. The system's speaker identification performance on the SPIDRE database, and facial identification performance on the AR database, is comparable with the literature. Combining both modalities using the new method of multimodal fusion leads to significantly improved accuracy over the unimodal systems, even when both modalities have been corrupted. The new method also shows improved identification accuracy compared with the bimodal systems based on multicondition model training or missing-feature decoding alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research aims to use the multivariate geochemical dataset, generated by the Tellus project, to investigate the appropriate use of transformation methods to maintain the integrity of geochemical data and inherent constrained behaviour in multivariate relationships. The widely used normal score transform is compared with the use of a stepwise conditional transform technique. The Tellus Project, managed by GSNI and funded by the Department of Enterprise Trade and Development and the EU’s Building Sustainable Prosperity Fund, involves the most comprehensive geological mapping project ever undertaken in Northern Ireland. Previous study has demonstrated spatial variability in the Tellus data but geostatistical analysis and interpretation of the datasets requires use of an appropriate methodology that reproduces the inherently complex multivariate relations. Previous investigation of the Tellus geochemical data has included use of Gaussian-based techniques. However, earth science variables are rarely Gaussian, hence transformation of data is integral to the approach. The multivariate geochemical dataset generated by the Tellus project provides an opportunity to investigate the appropriate use of transformation methods, as required for Gaussian-based geostatistical analysis. In particular, the stepwise conditional transform is investigated and developed for the geochemical datasets obtained as part of the Tellus project. The transform is applied to four variables in a bivariate nested fashion due to the limited availability of data. Simulation of these transformed variables is then carried out, along with a corresponding back transformation to original units. Results show that the stepwise transform is successful in reproducing both univariate statistics and the complex bivariate relations exhibited by the data. Greater fidelity to multivariate relationships will improve uncertainty models, which are required for consequent geological, environmental and economic inferences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the influence of temperature and moisture on the free-living stages of gastrointestinal nematodes have been described in detail, and evidence for global climate change is mounting, there have been only a few attempts to relate altered incidence or seasonal patterns of disease to climate change. Studies of this type have been completed for England Scotland and Wales, but not for Northern Ireland (NI). Here we present an analysis of veterinary diagnostic data that relates three categories of gastrointestinal nematode infection in sheep to historical meteorological data for NI. The infections are: trichostrongylosis/teladorsagiosis (Teladorsagia/Trichostrongylus), strongyloidosis and nematodirosis. This study aims to provide a baseline for future climate change analyses and to provide basic information for the development of nematode control programmes. After identifying and evaluating possible sources of bias, climate change was found to be the most likely explanation for the observed patterns of change in parasite epidemiology, although other hypotheses could not be refuted. Seasonal rates of diagnosis showed a uniform year-round distribution for Teladorsagia and Trichostrongylus infections, suggesting consistent levels of larval survival throughout the year and extension of the traditionally expected seasonal transmission windows. Nematodirosis showed a higher level of autumn than Spring infection, suggesting that suitable conditions for egg and larval development occurred after the Spring infection period. Differences between regions within the Province were shown for strongyloidosis, with peaks of infection falling in the period September-November. For all three-infection categories (trichostrongylosis/teladorsagiosis, strongyloidosis and nematodirosis), significant differences in the rates of diagnosis, and in the seasonality of disease, were identified between regions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How does participation in collective activity affect our social identifications and behavior? We investigate this question in a longitudinal questionnaire study conducted at one of the world’s largest collective events – the Magh Mela (a month-long Hindu religious festival in north India). Data gathered from pilgrims and comparable others who did not attend the event show that one month after this mass gathering was over, those who had participated (but not controls) exhibited a heightened social identification as Hindu and increased levels of religious activity (e.g., performing prayer rituals). Additional data gathered from the pilgrim respondents during the festival show that the pilgrims’ perceptions of sharing a common identity with other pilgrims, and of being able to enact their social identity in this event, predicted these outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advent of next generation sequencing technologies (NGS) has expanded the area of genomic research, offering high coverage and increased sensitivity over older microarray platforms. Although the current cost of next generation sequencing is still exceeding that of microarray approaches, the rapid advances in NGS will likely make it the platform of choice for future research in differential gene expression. Connectivity mapping is a procedure for examining the connections among diseases, genes and drugs by differential gene expression initially based on microarray technology, with which a large collection of compound-induced reference gene expression profiles have been accumulated. In this work, we aim to test the feasibility of incorporating NGS RNA-Seq data into the current connectivity mapping framework by utilizing the microarray based reference profiles and the construction of a differentially expressed gene signature from a NGS dataset. This would allow for the establishment of connections between the NGS gene signature and those microarray reference profiles, alleviating the associated incurring cost of re-creating drug profiles with NGS technology. We examined the connectivity mapping approach on a publicly available NGS dataset with androgen stimulation of LNCaP cells in order to extract candidate compounds that could inhibit the proliferative phenotype of LNCaP cells and to elucidate their potential in a laboratory setting. In addition, we also analyzed an independent microarray dataset of similar experimental settings. We found a high level of concordance between the top compounds identified using the gene signatures from the two datasets. The nicotine derivative cotinine was returned as the top candidate among the overlapping compounds with potential to suppress this proliferative phenotype. Subsequent lab experiments validated this connectivity mapping hit, showing that cotinine inhibits cell proliferation in an androgen dependent manner. Thus the results in this study suggest a promising prospect of integrating NGS data with connectivity mapping. © 2013 McArt et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scheduling problem in distributed data-intensive computing environments has become an active research topic due to the tremendous growth in grid and cloud computing environments. As an innovative distributed intelligent paradigm, swarm intelligence provides a novel approach to solving these potentially intractable problems. In this paper, we formulate the scheduling problem for work-flow applications with security constraints in distributed data-intensive computing environments and present a novel security constraint model. Several meta-heuristic adaptations to the particle swarm optimization algorithm are introduced to deal with the formulation of efficient schedules. A variable neighborhood particle swarm optimization algorithm is compared with a multi-start particle swarm optimization and multi-start genetic algorithm. Experimental results illustrate that population based meta-heuristics approaches usually provide a good balance between global exploration and local exploitation and their feasibility and effectiveness for scheduling work-flow applications. © 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article proposes that a complementary relationship exists between the formalised nature of digital loyalty card data, and the informal nature of small business market orientation. A longitudinal, case-based research approach analysed this relationship in small firms given access to Tesco Clubcard data. The findings reveal a new-found structure and precision in small firm marketing planning from data exposure; this complemented rather than conflicted with an intuitive feel for markets. In addition, small firm owners were encouraged to include employees in marketing planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web sites that rely on databases for their content are now ubiquitous. Query result pages are dynamically generated from these databases in response to user-submitted queries. Automatically extracting structured data from query result pages is a challenging problem, as the structure of the data is not explicitly represented. While humans have shown good intuition in visually understanding data records on a query result page as displayed by a web browser, no existing approach to data record extraction has made full use of this intuition. We propose a novel approach, in which we make use of the common sources of evidence that humans use to understand data records on a displayed query result page. These include structural regularity, and visual and content similarity between data records displayed on a query result page. Based on these observations we propose new techniques that can identify each data record individually, while ignoring noise items, such as navigation bars and adverts. We have implemented these techniques in a software prototype, rExtractor, and tested it using two datasets. Our experimental results show that our approach achieves significantly higher accuracy than previous approaches. Furthermore, it establishes the case for use of vision-based algorithms in the context of data extraction from web sites.