330 resultados para ethoexperimental neuroscience
Resumo:
The eng-genes concept involves the use of fundamental known system functions as activation functions in a neural model to create a 'grey-box' neural network. One of the main issues in eng-genes modelling is to produce a parsimonious model given a model construction criterion. The challenges are that (1) the eng-genes model in most cases is a heterogenous network consisting of more than one type of nonlinear basis functions, and each basis function may have different set of parameters to be optimised; (2) the number of hidden nodes has to be chosen based on a model selection criterion. This is a mixed integer hard problem and this paper investigates the use of a forward selection algorithm to optimise both the network structure and the parameters of the system-derived activation functions. Results are included from case studies performed on a simulated continuously stirred tank reactor process, and using actual data from a pH neutralisation plant. The resulting eng-genes networks demonstrate superior simulation performance and transparency over a range of network sizes when compared to conventional neural models. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Reaching to visual targets engages the nervous system in a series of transformations between sensory information and motor commands. That which remains to be determined is the extent to which the processes that mediate sensorimotor adaptation to novel environments engage neural circuits that represent the required movement in joint-based or muscle-based coordinate systems. We sought to establish the contribution of these alternative representations to the process of visuomotor adaptation. To do so we applied a visuomotor rotation during a center-out isometric torque production task that involved flexion/extension and supination/pronation at the elbow-joint complex. In separate sessions, distinct half-quadrant rotations (i.e., 45°) were applied such that adaptation could be achieved either by only rescaling the individual joint torques (i.e., the visual target and torque target remained in the same quadrant) or by additionally requiring torque reversal at a contributing joint (i.e., the visual target and torque target were in different quadrants). Analysis of the time course of directional errors revealed that the degree of adaptation was lower (by ~20%) when reversals in the direction of joint torques were required. It has been established previously that in this task space, a transition between supination and pronation requires the engagement of a different set of muscle synergists, whereas in a transition between flexion and extension no such change is required. The additional observation that the initial level of adaptation was lower and the subsequent aftereffects were smaller, for trials that involved a pronation–supination transition than for those that involved a flexion–extension transition, supports the conclusion that the process of adaptation engaged, at least in part, neural circuits that represent the required motor output in a muscle-based coordinate system.
Resumo:
The purpose of the experiment was to compare the level of synchronization exhibited by pairs of motor units located within and between functionally distinct regions of the biceps brachii muscle. Pairs of single motor units were recorded from seven subjects using separate electrodes located in the lateral and medial aspects of the long head of biceps brachii. Participants were required to exert a combination of flexion and supination torques so that both motor units discharged at approximately 10 pps for a parts per thousand yen200 s and the level of motor unit synchronization could be quantified. When motor unit recordings were sufficiently stable at the completion of this synchrony task, a series of ramp contractions with multiple combinations of flexion and supination torques were performed to characterize the recruitment thresholds of the motor units. Common input strength (CIS) was significantly greater (P <0.01) for the within-region pairs of motor units (0.28 extra sync. imps/s, n = 26) than for the between-region pairs (0.13 extra sync. imps/s, n = 18), but did not differ significantly for the 12 within-region pairs from the lateral head and 14 from the medial head (0.27 vs. 0.29 extra sync. imps/s; P = 0.83). Recruitment thresholds were measured for 33 motor units, but there was only a weak association between CIS and the respective recruitment patterns for motor unit pairs (n = 9). The present investigation provides evidence of a differential distribution of synaptic input across the biceps brachii motor neuron pool, but this appears to have minimal association with the recruitment patterns for individual motor units.
Resumo:
This exploratory study was undertaken to investigate the mechanisms that contributed to improvements in upper limb function following a novel training program. Surface electromyography (EMG) was used to examine training-induced changes in the pattern of triceps and biceps activation during reaching tasks in stroke survivors with severe paresis in the chronic stage of recovery. The EMG data were obtained in the context of a single blind randomised clinical trial conducted with 42 stroke survivors with minimal upper limb muscle activity and who were more than 6 months post-stroke. Of the 33 participants who completed the study, 10 received training of reaching using a non-robotic upper limb training device, the SMART Arm, with EMG triggered functional electrical stimulation (EMG-stim), 13 received training of reaching using the SMART Arm alone, and 10 received no intervention. Each intervention group engaged in 12 1-h training sessions over a 4-week period. Clinical and laboratory measures of upper limb function were administered prior to training (0 weeks), at completion (4 weeks) and 2 months (12 weeks) after training. The primary outcome measure was 'upper arm function' which is Item 6 of the Motor Assessment Scale (MAS). Laboratory measures consisted of two multijoint reaching tasks to assess 'maximum isometric force' and 'maximum distance reached'. Surface EMG was used to monitor triceps brachii and biceps brachii during the two reaching tasks. To provide a comparison with normal values, seven healthy adults were tested on one of the reaching tasks according to the same procedure. Study findings demonstrated a statistically significant improvement in upper limb function for stroke participants in the two training groups compared to those who received no training however no difference was found between the two training groups. For the reaching tasks, all stroke participants, when compared to normal healthy adults, exhibited lower triceps and biceps activation and a lower ratio of triceps to biceps activation. Following training, stroke participants demonstrated increased triceps activation and an increased ratio of triceps to biceps activation for the task that was trained. Better performance was associated with greater triceps activation and a higher ratio of triceps to biceps activation. The findings suggest that increased activation of triceps as an agonist and an improved coordination between triceps and biceps could have mediated the observed changes in arm function. The changes in EMG activity were small relative to the changes in arm function indicating that factors, such as the contribution of other muscles of reaching, may also be implicated.
Resumo:
A specific impairment in phoneme awareness has been hypothesized as one of the current explanations for dyslexia. We examined attentional shifts towards phonological information as indexed by event-related potentials (ERPs) in normal readers and dyslexic adults. Participants performed a lexical decision task on spoken stimuli of which 80% started with a standard phoneme and 20% with a deviant phoneme. A P300 modulation was expected for deviants in control adults, indicating that the phonological change had been detected. A mild and right-lateralized P300 was observed for deviant stimuli in controls, but was absent in dyslexic adults. This result suggests that dyslexic adults fail to make shifts of attention to phonological cues in the same way that normal adult readers do. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Difficulties in phonological processing have been proposed to be the core symptom of developmental dyslexia. Phoneme awareness tasks have been shown to both index and predict individual reading ability. In a previous experiment, we observed that dyslexic adults fail to display a P3a modulation for phonological deviants within an alliterated word stream when concentrating primarily on a lexical decision task [Fosker and Thierry, 2004, Neurosci. Lett. 357, 171-174]. Here we recorded the P3b oddball response elicited by initial phonemes within streams of alliterated words and pseudo-words when participants focussed directly on detecting the oddball phonemes. Despite significant verbal screening test differences between dyslexic adults and controls, the error rates, reactions times, and main components (P2, N2, P3a, and P3b) were indistinguishable across groups. The only difference between groups was found in the NI range, where dyslexic participants failed to show the modulations induced by phonological pairings (/b/-/p/ versus /r/ /g/) in controls. In light of previous P3a differences, these results suggest an important role for attention allocation in the manifestation of phonological deficits in developmental dyslexia. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Although much is now known about eye movement detection, little is known about the higher cognitive processes involved in joint attention. We developed video stimuli which when watched, engender an experience of joint attention in the observer. This allowed us to compare an experience of joint attention to nonjoint attention within an fMRI scanning environment. Joint attention was associated with activity in the ventromedial frontal cortex, the left superior frontal gyrus (BA10), cingulate cortex, and caudate nuclei. The ventromedial frontal cortex has been consistently shown to be activated during mental state attribution tasks. BA10 may serve a cognitive integration function, which in this case seems to utilize a perception–action matching process. The activation we identified in BA10 overlaps with a location of increased grey matter density that we recently found to be associated with autistic spectrum disorder. This study therefore constitutes evidence that the neural substrate of joint attention also serves a mentalizing function. The developmental failure of this substrate in the left anterior frontal lobe may be important in the etiology of autistic spectrum disorder.
Resumo:
Performing two tasks simultaneously often degrades performance of one or both tasks. While this dual-task interference is classically interpreted in terms of shared attentional resources, where two motor tasks are performed simultaneously interactions within primary motor cortex (i.e., activity-dependent coupling) may also be a contributing factor. In the present study TMS (transcranial magnetic stimulation) was used to examine the contribution of activity-dependent coupling to dual-task interference during concurrent performance of a bimanual coordination task and a discrete probe reaction time (RT) task involving the foot. Experiments 1 and 2 revealed that activity-dependent coupling within the leg corticomotor pathway was greater during dual-task performance than single-task performance, and this was associated with interference on the probe RT task (i.e., increased RT). Experiment 3 revealed that dual-task interference occurred regardless of whether the dual-task involved two motor tasks or a motor and cognitive task, however activity-dependent coupling was present only when a dual motor task was performed. This suggests that activity-dependent coupling is less detrimental to performance than attentional processes operating upstream of the corticomotor system. Finally, while prioritising the RT task reduced, but did not eliminate, dual-task interference the contribution of activity-dependent coupling to dual-task interference was not affected by task prioritisation. This suggests that although activity-dependent coupling may contribute to dual motor-task interference, attentional processes appear to be more important. It also suggests that activity-dependent coupling may not be subject to modulation by attentional processes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Accounts of the scalar inference from 'some X-ed' to 'not all X-ed' are central to the debate between contemporary theories of conversational pragmatics. An important contribution to this debate is to identify contexts that decrease the endorsement rate of the inference. We suggest that the inference is endorsed less often in face-threatening contexts, i.e., when X implies a loss of face for the listener. This claim is successfully tested in Experiment 1. Experiment 2 rules out a possible confound between face-threatening contexts and lower-bound contexts. Experiment 3 shows that whilst saying 'some X-ed' when one knew for a fact that all X-ed is always perceived as an underinformative utterance, it is also seen as a nice and polite thing to do when X threatens the face of the listener. These findings are considered from the perspective of Relevance Theory as well as that of the Generalized Conversational Inference approach. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We describe evidence that certain inductive phenomena are associated with IQ, that different inductive phenomena emerge at different ages, and that the effects of causal knowledge on induction are decreased under conditions of memory load. On the basis of this evidence we argue that there is more to inductive reasoning than semantic cognition.
Resumo:
Byrne's approach to the semifactual conditional captures the reasoning data. However, we argue that it does not account for the processes or Principles by which people arrive at representations of even-if conditionals, upon which their reasoning is said to be based. Drawing upon recent work on the suppositional conditional we present such an account.