376 resultados para Genyk, Timothy
Resumo:
Shared strains of Pseudomonas aeruginosa are now well recognized in people with cystic fibrosis (CF), and suitable P. aeruginosa laboratory typing tools are pivotal to understanding their clinical significance and guiding infection control policies in CF clinics. We therefore compared a single-nucleotide polymorphism (SNP)-based typing method using Sequenom iPLEX matrix-assisted laser desorption ionization with time-of-flight mass spectrometry (MALDI-TOF MS) with typing methods used routinely by our laboratory. We analysed 617 P. aeruginosa isolates that included 561 isolates from CF patients collected between 2001 and 2009 in two Brisbane CF clinics and typed previously by enterobacterial repetitive intergenic consensus (ERIC)-PCR, as well as 56 isolates from non-CF patients analysed previously by multilocus sequence typing (MLST). The isolates were tested using a P. aeruginosa Sequenom iPLEX MALDI-TOF (PA iPLEX) method comprising two multiplex reactions, a 13-plex and an 8-plex, to characterize 20 SNPs from the P. aeruginosa housekeeping genes acsA, aroE, guaA, mutL, nuoD, ppsA and trpE. These 20 SNPs were employed previously in a real-time format involving 20 separate assays in our laboratory. The SNP analysis revealed 121 different SNP profiles for the 561 CF isolates. Overall, there was at least 96% agreement between the ERIC-PCR and SNP analyses for all predominant shared strains among patients attending our CF clinics: AUST-01, AUST-02 and AUST-06. For the less frequently encountered shared strain AUST-07, 6/25 (24%) ERIC-PCR profiles were misidentified initially as AUST-02 or as unique, illustrating the difficulty of gel-based analyses. SNP results for the 56 non-CF isolates were consistent with previous MLST data. Thus, the PA iPLEX format provides an attractive high-throughput alternative to ERIC-PCR for large-scale investigations of shared P. aeruginosa strains.
Resumo:
Pseudomonas aeruginosa is an opportunistic pathogen and an important cause of infection, particularly amongst cystic fibrosis (CF) patients. While specific strains capable of patient-to-patient transmission are known, many infections appear to be caused by unique and unrelated strains. There is a need to understand the relationship between strains capable of colonising the CF lung and the broader set of P. aeruginosa isolates found in natural environments. Here we report the results of a multilocus sequence typing (MLST)-based study designed to understand the genetic diversity and population structure of an extensive regional sample of P. aeruginosa isolates from South East Queensland, Australia. The analysis is based on 501 P. aeruginosa isolates obtained from environmental, animal and human (CF and non-CF) sources with particular emphasis on isolates from the Lower Brisbane River and isolates from CF patients obtained from the same geographical region. Overall, MLST identified 274 different sequence types, of which 53 were shared between one or more ecological settings. Our analysis revealed a limited association between genotype and environment and evidence of frequent recombination. We also found that genetic diversity of P. aeruginosa in Queensland, Australia was indistinguishable from that of the global P. aeruginosa population. Several CF strains were encountered frequently in multiple ecological settings; however, the most frequently encountered CF strains were confined to CF patients. Overall, our data confirm a non-clonal epidemic structure and indicate that most CF strains are a random sample of the broader P. aeruginosa population. The increased abundance of some CF strains in different geographical regions is a likely product of chance colonisation events followed by adaptation to the CF lung and horizontal transmission among patients.
Resumo:
Recent molecular-typing studies suggest cross-infection as one of the potential acquisition pathways for Pseudomonas aeruginosa in patients with cystic fibrosis (CF). In Australia, there is only limited evidence of unrelated patients sharing indistinguishable P. aeruginosa strains. We therefore examined the point-prevalence, distribution, diversity and clinical impact of P. aeruginosa strains in Australian CF patients nationally. 983 patients attending 18 Australian CF centres provided 2887 sputum P. aeruginosa isolates for genotyping by enterobacterial repetitive intergenic consensus-PCR assays with confirmation by multilocus sequence typing. Demographic and clinical details were recorded for each participant. Overall, 610 (62%) patients harboured at least one of 38 shared genotypes. Most shared strains were in small patient clusters from a limited number of centres. However, the two predominant genotypes, AUST-01 and AUST-02, were widely dispersed, being detected in 220 (22%) and 173 (18%) patients attending 17 and 16 centres, respectively. AUST-01 was associated with significantly greater treatment requirements than unique P. aeruginosa strains. Multiple clusters of shared P. aeruginosa strains are common in Australian CF centres. At least one of the predominant and widespread genotypes is associated with increased healthcare utilisation. Longitudinal studies are now needed to determine the infection control implications of these findings.
Resumo:
Pseudomonas aeruginosa is associated with infectious endometritis in horses. Although infectious endometritis is often considered a venereal infection, there is relatively limited genotypic-based evidence to support this mode of transmission. The study sought to determine the relatedness between genital P. aeruginosa isolates collected from a limited geographical region using molecular strain typing. Enterobacterial repetitive intergenic consensus PCR typing was performed on 93 isolates collected between 2005 and 2009 from 2058 thoroughbred horses (including 18 stallions) at 66 studs. While P. aeruginosa was not detected in the stallions, 53/93 (57%) mares harbouring P. aeruginosa had clonally related strains, which included a single dominant genotype detected in 42 (45%) mares from 13 different studs. These novel findings suggest that most equine genital P. aeruginosa infections in this region may have been acquired from mechanisms other than direct horse to horse transmission. Instead, other potential acquisition pathways, as well as strain specific adaptation to the equine genital tract, should be investigated.
Resumo:
Monitoring the emergence and transmission of Pseudomonas aeruginosa strains among cystic fibrosis (CF) patients is important for infection control in CF centers internationally. A recently developed multilocus sequence typing (MLST) scheme is used for epidemiologic analyses of P. aeruginosa outbreaks; however, little is known about its suitability for isolates from CF patients compared with that of pulsed-field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). As part of a prevalence study of P. aeruginosa strains in Australian CF clinics, we compared the discriminatory power and concordance of ERIC-PCR, PFGE, and MLST among 93 CF sputum and 11 control P. aeruginosa isolates. PFGE and MLST analyses were also performed on 30 paired isolates collected 85 to 354 days apart from 30 patients attending two CF centers separated by 3,600 kilometers in order to detect within-host evolution. Each of the three methods displayed high levels of concordance and discrimination; however, overall lower discrimination was seen with ERIC-PCR than with MLST and PFGE. Analysis of the 50 ERIC-PCR types yielded 54 PFGE types, which were related by ≤ 6 band differences, and 59 sequence types, which were classified into 7 BURST groups and 42 singletons. MLST also proved useful for detecting novel and known strains and for inferring relatedness among unique PFGE types. However, 47% of the paired isolates produced PFGE patterns that within 1 year differed by one to five bands, whereas with MLST all paired isolates remained identical. MLST thus represents a categorical analysis tool with resolving power similar to that of PFGE for typing P. aeruginosa. Its focus on highly conserved housekeeping genes is particularly suited for long-term clinical monitoring and detecting novel strains.
Resumo:
BACKGROUND AND OBJECTIVE: Human research ethics committees provide essential review of research projects to ensure the ethical conduct of human research. Several recent reports have highlighted a complex process for successful application for human research ethics committee approval, particularly for multi-centre studies. Limited resources are available for the execution of human clinical research in Australia and around the world.
METHODS: This report overviews the process of ethics approval for a National Health and Medical Research Council-funded multi-centre study in Australia, focussing on the time and resource implications of such applications in 2007 and 2008.
RESULTS: Applications were submitted to 16 hospital and two university human research ethics committees. The total time to gain final approval from each committee ranged between 13 and 77 days (median = 46 days); the entire process took 16 months to complete and the research officer's time was estimated to cost $A34 143.
CONCLUSIONS: Obstacles to timely human research ethics committee approval are reviewed, including recent, planned and potential initiatives that could improve the ethics approval of multi-centre research.
Resumo:
Pseudomonas aeruginosa is an important cause of pulmonary infection in cystic fibrosis (CF). Its correct identification ensures effective patient management and infection control strategies. However, little is known about how often CF sputum isolates are falsely identified as P. aeruginosa. We used P. aeruginosa-specific duplex real-time PCR assays to determine if 2,267 P. aeruginosa sputum isolates from 561 CF patients were correctly identified by 17 Australian clinical microbiology laboratories. Misidentified isolates underwent further phenotypic tests, amplified rRNA gene restriction analysis, and partial 16S rRNA gene sequence analysis. Participating laboratories were surveyed on how they identified P. aeruginosa from CF sputum. Overall, 2,214 (97.7%) isolates from 531 (94.7%) CF patients were correctly identified as P. aeruginosa. Further testing with the API 20NE kit correctly identified only 34 (59%) of the misidentified isolates. Twelve (40%) patients had previously grown the misidentified species in their sputum. Achromobacter xylosoxidans (n = 21), Stenotrophomonas maltophilia (n = 15), and Inquilinus limosus (n = 4) were the species most commonly misidentified as P. aeruginosa. Overall, there were very low rates of P. aeruginosa misidentification among isolates from a broad cross section of Australian CF patients. Additional improvements are possible by undertaking a culture history review, noting colonial morphology, and performing stringent oxidase, DNase, and colistin susceptibility testing for all presumptive P. aeruginosa isolates. Isolates exhibiting atypical phenotypic features should be evaluated further by additional phenotypic or genotypic identification techniques.
Resumo:
Phenotypic identification of Gram-negative bacteria from respiratory specimens of patients with cystic fibrosis carries a high risk of misidentification. Molecular identification techniques that use single-gene targets are also susceptible to error, including cross-reaction issues with other Gram-negative organisms. In this study, we have designed a Pseudomonas aeruginosa duplex real-time polymerase chain reaction (PCR) (PAduplex) assay targeting the ecfX and the gyrB genes. The PAduplex was evaluated against a panel of 91 clinical and environmental isolates that were presumptively identified as P. aeruginosa. The results were compared with those obtained using a commercial biochemical identification kit and several other P. aeruginosa PCR assays. The results showed that the PAduplex assay is highly suitable for routine identification of P. aeruginosa isolates from clinical or environmental samples. The 2-target format provides simultaneous confirmation of P. aeruginosa identity where both the ecfX and gyrB PCR reactions are positive and may also reduce the potential for false negatives caused by sequence variation in primer or probe targets.
Resumo:
Burkholderia cepacia complex (Bcc) comprises nine closely related species or genomovars. It is an important causative agent of opportunistic infections and waterborne nosocomial infections. B. cepacia (formerly genomovar I) was identified from the blood culture of a baby in our neonatal unit (NU) in March 2005. B. cepacia was isolated four times from clinical specimens since the introduction of non-touch taps in the NU from 2000 to 2005 and only once from 1994 to 2000. Environmental samples were collected from the NU, including tap water from non-touch taps. Clinical and environmental isolates of Bcc were characterized using molecular identification and strain typing. A literature review was undertaken to delineate a method for eradication of Bcc. Several variations for hot water eradication of the organism from the taps were attempted. Genotyping and molecular analysis revealed that tap water isolates were B. cenocepacia which was a different species from the B. cepacia isolated from blood cultures of the neonate. However, B. cenocepacia has been known to cause nosocomial outbreaks and it was eventually eradicated from the NU by using repeated thermal shock (hot water at 65 degrees C for 10 min), changing taps and decolonizing sinks with hypochlorite. Molecular typing is useful in assisting the investigation of Bcc nosocomial infections.
Resumo:
The Burkholderia cepacia complex (Bcc) is a group of significant opportunistic respiratory pathogens which affect people with cystic fibrosis. In this study, we sought to ascertain the epidemiology and geographic species distribution of 116 Bcc isolates collected from people with CF in Australia and New Zealand. We performed a combination of recA-based PCR, amplified rDNA restriction analysis (ARDRA), pulsed-field gel electrophoresis and repetitive extragenic palindromic PCR on each isolate. Each Burkholderia cenocepacia isolate was also screened by PCR for the presence of the B. cepacia epidemic strain marker. One hundred and fourteen isolates were assigned to a species using recA-based PCR and ARDRA. B. cenocepacia, B. multivorans and B. cepacia accounted for 45.7%, 29.3% and 11.2% of the isolates, respectively. Strain analysis of B. cenocepacia revealed that 85.3% of the isolates were unrelated. One related B. cenocepacia strain was identified amongst 15 people. Whilst full details of person-to-person contact was not available, all patients attended CF centres in Queensland (Qld) and New South Wales (NSW). Although person-to-person transmission of B. cenocepacia strains has occurred in Australia, the majority of CF-related Bcc infections in Australia and New Zealand are most likely acquired from the environment.
Resumo:
How did the counter-cultural aims of Radical Psychiatry coincide with those of documentary filmmaking in the 1960s? Where the forms and structures of new approaches to the documentary necessarily complicit in promoting the clinical and anti-clinical practices, and wider political agenda, of Radical Psychiatry? How did the documentary deal with the ethical, aesthetic, and audience-related issues associated with filming personalities and environments associated with Radical Psychiatry? How did Radical Psychiatry and the documentary shape postwar discourses on trauma, especially within conflict and post-conflict (PTSD) contexts? What is the legacy of Radical Pschiatry today, and how has it been explored by contemporary documentray film?
This article addresses these question by examining a range of documentaries dealing with the radical and 'anti-psychiatric' ideas and methods of figures such as R.D.Laing, David Cooper, Jan Bastiaans, Timothy Leary, and Franco Basaglia. Films analysed include Peter Robinson's Asylum (1972) and Psychiatry and Violence (1973); Ah, Sunflower (Klinkert and Sinclair, 1967); Anatomy of Violence (Davis, 1967); Turn On, Tune In, Drop Out (Robin Clarke, 1967), W. R. - Mysteries of the Organism (Makavejev, 1971); Raymond Depardon's San Clemente (1980) and Urgences (1988); and Louis van Gasteren's trilogy Now Do You Get it Why I am Crying (1969), The Price of Survival (2003), and There is No Plane to Zagreb (2012).
The article concludes with a discussion of Nicolas Philibert's Every Little Thing (1997) within the context of the French documentary tradition and the film's more immediate subject - the famous clinic at La Borde established by Jean Oury, and associated with the methods and theories of figures such as Jacques
Lacan, Francesc Tosquelles, Franz Fanon, and Félix Guattari.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.