357 resultados para Fibrosis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thioacetamide (TAA) administration is an established technique for generating rat models of liver fibrosis and cirrhosis. Oxidative stress is believed to be involved as TAA-induced liver fibrosis is initiated by thioacetamide S-oxide, which is derived from the biotransformation of TAA by the microsomal flavine-adenine dinucleotide (FAD)-containing monooxygense (FMO) and cytochrome P450 systems. A two-dimensional gel electrophoresis-mass spectrometry approach was applied to analyze the protein profiles of livers of rats administered with sublethal doses of TAA for 3, 6 and 10 weeks respectively. With this approach, 59 protein spots whose expression levels changed significantly upon TAA administration were identified, including three novel proteins. These proteins were then sorted according to their common biochemical properties and functions, so that pathways involved in the pathogenesis of rat liver fibrosis due to TAA-induced toxicity could be elucidated. As a result, it was found that TAA-administration down-regulated the enzymes of the primary metabolic pathways such as fatty acid beta-oxidation, branched chain amino acids and methionine breakdown. This phenomenon is suggestive of the depletion of succinyl-CoA which affects heme and iron metabolism. Up-regulated proteins, on the other hand, are related to oxidative stress and lipid peroxidation. Finally, these proteomics data and the data obtained from the scientific literature were integrated into an

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Persistent activation of NF-B is central to the pathogenesis of many inflammatory lung disorders including Cystic Fibrosis, Asthma and Chronic Obstructive Pulmonary Disease. A20 is an endogenous negative regulator of NF-B signalling which has been widely described in autoimmune and inflammatory disorders including Diabetes and Crohn’s disease, but which has received little attention in terms of chronic lung disorders. This review examines the existing body of research on A20 regulation of NF-B signalling and details the mechanism and regulation of A20 action focusing, where possible, on pulmonary inflammation. A20 and its associated signalling molecules are highlighted as being of potential therapeutic interest for the treatment of inflammatory disorders and a proposed model of A20 activity in inflammatory lung disease is provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Anaerobic bacteria are increasingly regarded as important in cystic fibrosis (CF) pulmonary infection. The aim of this study was to determine the effect of antibiotic treatment on aerobic and anaerobic microbial community diversity and abundance during exacerbations in patients with CF.

Methods: Sputum was collected at the start and completion of antibiotic treatment of exacerbations and when clinically stable. Bacteria were quantified and identified following culture, and community composition was also examined using culture-independent methods.

Results: Pseudomonas aeruginosa or Burkholderia cepacia complex were detected by culture in 24/26 samples at the start of treatment, 22/26 samples at completion of treatment and 11/13 stable samples. Anaerobic bacteria were detected in all start of treatment and stable samples and in 23/26 completion of treatment samples. Molecular analysis showed greater bacterial diversity within sputum samples than was detected by culture; there was reasonably good agreement between the methods for the presence or absence of aerobic bacteria such as P aeruginosa (kappa=0.74) and B cepacia complex (kappa=0.92), but agreement was poorer for anaerobes. Both methods showed that the composition of the bacterial community varied between patients but remained relatively stable in most individuals despite treatment. Bacterial abundance decreased transiently following treatment, with this effect more evident for aerobes (median decrease in total viable count 2.3 x 10(7) cfu/g, p=0.005) than for anaerobes (median decrease in total viable count 3 x 10(6) cfu/g, p=0.046).

Conclusion: Antibiotic treatment targeted against aerobes had a minimal effect on abundance of anaerobes and community composition, with both culture and molecular detection methods required for comprehensive characterisation of the microbial community in the CF lung. Further studies are required to determine the clinical significance of and optimal treatment for these newly identified bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies have provided compelling evidence implicating the Wnt signalling pathway in the pathogenesis of diabetic nephropathy. Gene expression profiles associated with renal fibrosis have been attenuated through Wnt pathway modulation in model systems implicating Wnt pathway members as potential therapeutic targets for the treatment of diabetic nephropathy. We assessed tag and potentially functional single nucleotide polymorphisms (SNPs; n = 31) in four key Wnt pathway genes (CTNNB1, AXIN2, LRP5 and LRP6) for association with diabetic nephropathy using a case-control design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organ donation plays a major role in the management of patients with single organ failure of the kidneys, liver, pancreas, heart, or lung, or with combined organ failure of heart and lung (such as in cystic fibrosis) or of kidney and pancreas (such as in diabetes). A shortage of transplant organs has resulted in long waits for transplantation. Currently about 500 people in the United Kingdom die each year because of a shortage of donated organs,1 and at 31 March 2011 almost 7000 patients were waiting for a kidney transplant1 and would be having costly dialysis with serious morbidity and impact on quality of life. This shortage of organs is partly the result of relatively low numbers of road traffic deaths (lower than in many countries) but is also the result of inefficiencies in the donor identification and consent processes. This article summarises the most recent recommendations from the National Institute for Health and Clinical Excellence (NICE) on improving donor identification and consent rates for deceased organ donation.2

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background
Neutrophil elastase (NE)-mediated inflammation contributes to lung damage in cystic fibrosis (CF). We investigated if DX-890, a small-protein NE inhibitor, could reduce neutrophil trans-epithelial migration and reduce activity released from neutrophils and NE-induced cytokine expression in airway epithelial cells.

Methods
Activated blood neutrophils (CF and healthy) treated ± DX-890 were assayed for NE activity. Transmigration of calcein-labeled neutrophils was studied using a 16HBE14o- epithelial monolayer. IL-8 release from primary nasal epithelial monolayers (CF and healthy) was measured after treatment ± DX-890 and NE or CF sputum.

Results
DX-890 reduced NE activity from neutrophils (CF and healthy) and reduced neutrophil transmigration. DX-890 pre-treatment reduced IL-8 release from epithelial cells of healthy or CF subjects after stimulation with NE and CF sputum sol. All improvements with DX-890 were statistically significant (p < 0.05).

Conclusions
DX-890 reduces NE-mediated transmigration and inflammation. NE inhibition could be useful in managing neutrophilic airway inflammation in CF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia, a member of the Burkholderia cepacia complex, is an opportunistic pathogen that causes devastating infections in patients with cystic fibrosis. The ability of B. cenocepacia to survive within host cells could contribute significantly to its virulence in immunocompromised patients. In this study, we explored the mechanisms that enable B. cenocepacia to survive inside macrophages. We found that B. cenocepacia disrupts the actin cytoskeleton of infected macrophages, drastically altering their morphology. Submembranous actin undergoes depolymerization, leading to cell retraction. The bacteria perturb actin architecture by inactivating Rho family GTPases, particularly Rac1 and Cdc42. GTPase inactivation follows internalization of viable B. cenocepacia and compromises phagocyte function: macropinocytosis and phagocytosis are markedly inhibited, likely impairing the microbicidal and antigen-presenting capability of infected macrophages. The type VI secretion system is essential for the bacteria to elicit these changes. This is the first report demonstrating inactivation of Rho family GTPases by a member of the B. cepacia complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a Gram-negative opportunistic pathogen of patients with cystic fibrosis and chronic granulomatous disease. The bacterium survives intracellularly in macrophages within a membrane-bound vacuole (BcCV) that precludes the fusion with lysosomes. The underlying cellular mechanisms and bacterial molecules mediating these phenotypes are unknown. Here, we show that intracellular B. cenocepacia expressing a type VI secretion system (T6SS) affects the activation of the Rac1 and Cdc42 RhoGTPase by reducing the cellular pool of GTP-bound Rac1 and Cdc42. The T6SS also increases the cellular pool of GTP-bound RhoA and decreases cofilin activity. These effects lead to abnormal actin polymerization causing collapse of lamellipodia and failure to retract the uropod. The T6SS also prevents the recruitment of soluble subunits of the NADPH oxidase complex including Rac1 to the BcCV membrane, but is not involved in the BcCV maturation arrest. Therefore, T6SS-mediated deregulation of Rho family GTPases is a common mechanism linking disruption of the actin cytoskeleton and delayed NADPH oxidase activation in macrophages infected with B. cenocepacia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environmental bacterium Burkholderia cenocepacia causes opportunistic lung infections in immunocompromised individuals, particularly in patients with cystic fibrosis. Infections in these patients are associated with exacerbated inflammation leading to rapid decay of lung function, and in some cases resulting in cepacia syndrome, which is characterized by a fatal acute necrotizing pneumonia and sepsis. B. cenocepacia can survive intracellularly in macrophages by altering the maturation of the phagosome, but very little is known on macrophage responses to the intracellular infection. In this study, we have examined the role of the PI3K/Akt signaling pathway in B. cenocepacia-infected monocytes and macrophages. We show that PI3K/Akt activity was required for NF-kappa B activity and the secretion of proinflammatory cytokines during infection with B. cenocepacia. In contrast to previous observations in epithelial cells infected with other Gram-negative bacteria, Akt did not enhance I kappa B kinase or NF-kappa B p65 phosphorylation, but rather inhibited GSK3 beta, a negative regulator of NF-kappa B transcriptional activity. This novel mechanism of modulation of NF-kappa B activity may provide a unique therapeutic target for controlling excessive inflammation upon B. cenocepacia infection. The Journal of Immunology, 2011, 187: 635-643.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type VI secretion system (T6SS) contributes to the virulence of Burkholderia cenocepacia, an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. BcsK(C) is a highly conserved protein among the T6SSs in Gram-negative bacteria. Here, we show that BcsK(C) is required for Hcp secretion and cytoskeletal redistribution in macrophages upon bacterial infection. These two phenotypes are associated with a functional T6SS in B. cenocepacia. Experiments employing a bacterial two-hybrid system and pulldown assays demonstrated that BcsK(C) interacts with BcsL(B), another conserved T6SS component. Internal deletions within BcsK(C) revealed that its N-terminal domain is necessary and sufficient for interaction with BcsL(B). Fractionation experiments showed that BcsK(C) can be in the cytosol or tightly associated with the outer membrane and that BcsK(C) and BcsL(B) form a high molecular weight complex anchored to the outer membrane that requires BcsF(H) (a ClpV homolog) to be assembled. Together, our data show that BcsK(C)/BcsL(B) interaction is essential for the T6SS activity in B. cenocepacia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Burkholderia cepacia complex (Bcc) is a group of genetically related environmental bacteria that can cause chronic opportunistic infections in patients with cystic fibrosis (CF) and other underlying diseases. These infections are difficult to treat due to the inherent resistance of the bacteria to antibiotics. Bacteria can spread between CF patients through social contact and sometimes cause cepacia syndrome, a fatal pneumonia accompanied by septicemia. Burkholderia cenocepacia has been the focus of attention because initially it was the most common Bcc species isolated from patients with CF in North America and Europe. Today, B. cenocepacia, along with Burkholderia multivorans, is the most prevalent Bcc species in patients with CF. Given the progress that has been made in our understanding of B. cenocepacia over the past decade, we thought that it was an appropriate time to review our knowledge of the pathogenesis of B. cenocepacia, paying particular attention to the characterization of virulence determinants and the new tools that have been developed to study them. A common theme emerging from these studies is that B. cenocepacia establishes chronic infections in immuno-compromised patients, which depend more on determinants mediating host niche adaptation than those involved directly in host cells and tissue damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an opportunistic pathogen that survives intracellularly in macrophages and causes serious respiratory infections in patients with cystic fibrosis. We have previously shown that bacterial survival occurs in bacteria-containing membrane vacuoles (BcCVs) resembling arrested autophagosomes. Intracellular bacteria stimulate IL-1ß secretion in a caspase-1-dependent manner and induce dramatic changes to the actin cytoskeleton and the assembly of the NADPH oxidase complex onto the BcCV membrane. A Type 6 secretion system (T6SS) is required for these phenotypes but surprisingly it is not required for the maturation arrest of the BcCV. Here, we show that macrophages infected with B. cenocepacia employ the NLRP3 inflammasome to induce IL-1ß secretion and pyroptosis. Moreover, IL-1ß secretion by B. cenocepacia-infected macrophages is suppressed in deletion mutants unable to produce functional Type VI, Type IV, and Type 2 secretion systems (SS). We provide evidence that the T6SS mediates the disruption of the BcCV membrane, which allows the escape of proteins secreted by the T2SS into the macrophage cytoplasm. This was demonstrated by the activity of fusion derivatives of the T2SS-secreted metalloproteases ZmpA and ZmpB with adenylcyclase. Supporting this notion, ZmpA and ZmpB are required for efficient IL-1ß secretion in a T6SS dependent manner. ZmpA and ZmpB are also required for the maturation arrest of the BcCVs and bacterial intra-macrophage survival in a T6SS-independent fashion. Our results uncover a novel mechanism for inflammasome activation that involves cooperation between two bacterial secretory pathways, and an unanticipated role for T2SS-secreted proteins in intracellular bacterial survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is commonly found in the environment and also as an important opportunistic pathogen infecting patients with cystic fibrosis. Successful infection by this bacterium requires coordinated expression of virulence factors, which is achieved through different quorum sensing (QS) regulatory systems. Biofilm formation and Type 6 secretion system (T6SS) expression in B. cenocepacia K56-2 are positively regulated by QS and negatively regulated by the sensor kinase hybrid AtsR. This study reveals that in addition to affecting biofilm and T6SS activity, the deletion of atsR in B. cenocepacia leads to overproduction of other QS-regulated virulence determinants including proteases and swarming motility. Expression of the QS genes, cepIR and cciIR, was upregulated in the ?atsR mutant and resulted in early and increased N-acylhomoserine lactone (AHL) production, suggesting that AtsR plays a role in controlling the timing and fine-tuning of virulence gene expression by modulating QS signalling. Furthermore, a ?atsR?cepI?cciI mutant could partially upregulate the same virulence determinants indicating that AtsR also modulates the expression of virulence genes by a second mechanism, independently of any AHL production. Together, our results strongly suggest that AtsR is a global virulence regulator in B. cenocepacia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a member of the Burkholderia cepacia complex (Bcc), a group of Gram-negative opportunistic pathogens that cause severe lung infections in patients with cystic fibrosis and display extreme intrinsic resistance to antibiotics including antimicrobial peptides. B. cenocepacia BCAL2157 encodes a protein homologous to SuhB, an inositol-1-monophosphatase from Escherichia coli, which was suggested to participate in posttranscriptional control of gene expression. In this work we show that a deletion of the suhB-like gene in B. cenocepacia (?suhBBc) was associated with pleiotropic phenotypes. The ?suhBBc mutant had a growth defect manifested by an almost 2-fold increase in the generation time relative to the parental strain. The mutant also had a general defect in protein secretion, motility and biofilm formation. Further analysis of the Type-2 and the Type-6 secretion systems activities revealed that these secretion systems were inactive in the ?suhBBc mutant. In addition, the mutant exhibited increased susceptibility to polymyxin B but not to aminoglycosides like gentamicin and kanamycin. Together, our results demonstrate that suhBBc deletion compromises general protein secretion including the activity of T2SS and T6SS, and affects polymyxin B resistance, motility, and biofilm formation. The pleiotropic effects observed upon suhBBc deletion demonstrate that suhBBc plays a critical role in the physiology of B. cenocepacia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an opportunistic pathogen causing life-threatening infections in patients with cystic fibrosis. The bacterium survives within macrophages by interfering with endocytic trafficking and delaying the maturation of the B. cenocepacia-containing phagosome. We hypothesize that B. cenocepacia undergoes changes in gene expression after internalization by macrophages, inducing genes involved in intracellular survival and host adaptation.